Year 2021 Vol. 29 No 2

GENERAL & SPECIAL SURGERY

I.V. SHIPITSYNA, E.V. OSIPOVA

SPECIES COMPOSITION OF ASSOCIATIONS AND RELATIONSHIPS BETWEEN MICROORGANISMS ISOLATED FROM OSTEOMYELITIS FOCUS

National Ilizarov Scientific Center for Traumatology and Orthopedics, Kurgan,
The Russian Federation

Objective. To determine the species composition of the associations isolated from osteomyelitis foci and to study the character of associate relationships based on the biofilm-forming ability data.
Methods. The microbiological study included clinical isolates (n=184) obtained from associations (n=88) during primary inoculations from wounds and fistulas of patients (n= 88) with chronic osteomyelitis of long tubular bones. In order to obtain an associative biofilm in vitro, the cultures of competing bacterial strains were daily mixed in 1:1 ratio. The biofilms were grown on the surface of polystyrene plates with subsequent determination of the level of biofilm formation in 24 and 48 hours. The coefficient of relationship (CR) was calculated to evaluate the synergistic, neutral and antagonistic relationships between bacteria in the biofilms.
Results. The associations of staphylococcus with gram-negative bacteria were most frequently recovered from osteomyelitis foci. On the 1st day of the experiment, 38,6 % of associations had a moderate biofilm-forming ability, and besides, associations of gram-positive + gram-negative bacteria were observed in 36,4%; 42,1% of associations had a low biofilm-forming ability; 19,3% – had a high biofilm-forming ability. After 48 hours the percentage of mild adhesive strains remained at the same level – 38,6%, as for the low adhesive ones it decreased to 36,4%, high adhesive – increased up to 25%. Most bacterial associations manifested antagonistic relationships. Synergism in biofilm-formingby the association of S. aureus + P. aeruginosa was observed in 2 cases,while the level of film-forming was high as on the first and the second day of the study. In several associations it transformed from antagonistic to synergistic or neutral relationships.
Conclusion. It has ben established that among the identified associations, the largest specific weight falls on the associations of gram-positive + gram-negative bacteria , while S. aureus is one of the most common components. These associations were noted to have high and mild activity of biofilm -forming on the surface of polystyrene plates. Relationships between the microorganisms isolated from osteomyelitis foci in associations, as a rule, are antagonistic.

Keywords: osteomyelitis, associations of bacteria, biofilms, antagonism, synergism, coefficient of relationship
p. 183-190 of the original issue
References
  1. Sakovich NV, Andreev AA, Mikulich EV, Ostroushko AP, Zvyaginn VG. Modern aspects of etiology, diagnostics and treatment of osteomyelitis. Vestn Eksperim i Klin Khirurgii. 2018;11(1):70-79. doi: 10.18499/2070-478X-2018-11-1-70-79 (In Russ.)
  2. Leonova SN, Rekhov AV, Kameka AL. Bacteriologic examination of wound exudate in patients with local and disseminated chronic osteomyelitis. Acta Biomedica Scientifica (East Siberian Biomedical Journal). 2016;1(4):91-94. doi: 10.12737/22975 (In Russ.)
  3. Daher SR. The association analysis of microorganisms osteomyelitis of tubular bones. Integrativnye Tendentsii v Meditsine i Obrazovanii. 2016;(4):30-31. https://www.elibrary.ru/title_about.asp?id=53604 ( In Russ.)
  4. Petukhov VI, Bulavkin VP, Okulich VK, Plotnikov FV. Ratsional’noe ispol’zovanie antibiotikov v lechenii posttravmaticheskogo osteomielita s uchetom dinamiki izmeneniia rezistentnosti. Novosti Khirurgii. 2012;20(1):71-79. http://www.surgery.by/pdf/full_text/2012_1_13_ft.pdf ( In Russ.)
  5. Shipitsyna IV, Osipova EV, Ovchinnikov EN, Leonchuk DS. Zavisimost‘ bioplenkoobrazuiushchei sposobnosti ot antibiotikochuvstvitel‘nosti klinicheskikh shtammov Pseudomonas aeruginosa, vydelennykh u patsientov s khronicheskim osteomielitom. Klin Lab Diagnostika. 2020;65(1):37-41. https://www.medlit.ru/journalsview/lab/view/journal/2020/issue-1/ ( In Russ.)
  6. Terekhova RP, Mitish VA, Paskhalova YuS, Skladan GE, Prudnikova SA, Blatun LA. Osteomyelitis agents of the long bones and their resistance. Wounds and Wound Infections. 2016;3(2):24-30. doi: 10.17650/2408-9613-2016-3-2-24-30 (In Russ.)
  7. Gordinskaya NA, Sabirova EV, Abramova NV, Dudareva EV, Mitrofanov VN. Resistance of main pathogenic organisms in the department of purulent osteology. Vopr Travmatologii i Ortopedii. 2012;(1):14-17. https://www.elibrary.ru/item.asp?id=18231216 (In Russ.)
  8. Fadeev SB. The dynamics of species structure of microflora of foci surgical soft tissue infection in the course of the disease. Biul Orenburg Nauch Tsentra UrO RAN. 2013;(3):4. https://cyberleninka.ru/article/n/dinamika-vidovogo-sostava-mikroflory-ochagov-hirurgicheskoy-infektsii-myagkih-tkaney-v-techenie-zabolevaniya (In Russ.)
  9. Slatina NM, Plotkin LL, Belov VV. Microbiological and clinical significance of biofilm infections (review). Ural Med Zhurn. 2014;(4):106-12 https://www.elibrary.ru/item.asp?id=22002684 (In Russ.)
  10. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. J Mol Biol. 2015 Nov 20;427(23):3628-45. doi: 10.1016/j.jmb.2015.08.016
  11. van Vugt TA, Geurts J, Arts JJ. Clinical Application of Antimicrobial Bone Graft Substitute in Osteomyelitis Treatment: A Systematic Review of Different Bone Graft Substitutes Available in Clinical Treatment of Osteomyelitis. Biomed Res Int. 2016;2016:6984656. doi: 10.1155/2016/6984656
  12. Chebotar IV, Lazareva AV, Masalov YaK, Mikhailovich VM, Mayanskiy NA. Acinetobacter: Microbiological, Pathogenetic and Resistant Properties. Vestn RAMN. 2014;69(9-10):39-50. doi: 10.15690/vramn.v69i9-10.1130 ( In Russ.)
  13. Mironov SP, Tsiskarashvili AV, Gorbatiuk DS. Chronic post-traumatic osteomyelitis as a problem of contemporary traumatology and orthopedics (literature review). Genii Ortopedii. 2019;25(4):610-21. doi: 10.18019/1028-4427-2019-25-4-610-621 ( In Russ.)
  14. Masadeh MM, Mhaidat NM, Alzoubi KH, Hussein EI, Al-Trad EI. In vitro determination on the antibiotic susceptibility of biofilm-forming Ps. aeruginosa and S. aureus: possible role of proteolytic activity and membrane lipopolysaccharide. Infect Drug Resist. 2013;6:27-32. Published online 2013 Mar 6. doi: 10.2147/IDR.S41501
  15. Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013 May 15;4(4):273-83. doi: 10.4161/viru.23987
Address for correspondence:
640014, Russian Federation,
Kurgan, M.Ulyanovoy Str., 6,
National Ilizarov Scientific Center for Traumatology and Orthopedics, Ministry of Health of Russia, Research Clinical Laboratory
of Microbiology and Immunology
tel.mob. +7 909 179-26-01,
å-mail vschimik@mail.ru
Shipitsyna Irina V.
Information about the authors:
Shipitsyna Irina V., PhD, Researcher of the Research Clinical Laboratory of Microbiology and Immunology, National Ilizarov Scientific Center for Traumatology and Orthopedics of the Ministry of Health of the Russian Federation, Kurgan,Russian Federation.
http://orcid.org/0000-0003-2012-3115
Osipova Elena V., PhD, Senior Researcher of the Research Clinical Laboratory of Microbiology and Immunology, National Ilizarov Scientific Center for Traumatology and Orthopedics of the Ministry of Health of the Russian Federation, Kurgan,Russian Federation.
http://orcid.org/0000-0003-2408-4352
Contacts | ©Vitebsk State Medical University, 2007-2023