Novosti
Khirurgii
This journal is
indexed in Scopus



Year 2019 Vol. 27 No 3

SCIENTIFIC PUBLICATIONS
EXPERIMENTAL SURGERY

DOI: https://dx.doi.org/10.18484/2305-0047.2019.3.249   |  

V.A. LIPATOV 1, S.V. LAZARENKO 1, A.N. BETZ 2, D.A. SEVERINOV 1

CHANGES OF PHYSICO-MECHANICAL PROPERTIES OF VASCULAR PATCHES IN CONDITIONS OF CHRONIC EXPERIMENT IN VIVO

Kursk State Medical University 1,
Kursk Regional Hospital 2, Kursk,
The Russian Federation

Objective. To study the changes of the physical and mechanical properties of the vascular patch canvas (breaking load and tensile elongation at uniaxial tension) in the conditions of a chronic experiment in vivo.
Methods. New samples of vascular patches based on polyethylene terephthalate (PETP) fibers were used for experimental studies. In the group 1 warp-knitted canvas based on polyethylene terephthalate fibers was used; in the group 2 woven canvas based on polyethylene terephthalate and fluoronone, additionally impregnated with gelatin; the group 3 warp knitted canvas based on polyethylene terephthalate fibers, developed by the group of the authors. As a comparison group, the results of the study of the same samples of vascular patches, non-implanted into the tissue of laboratory animals were used.
As the object for implantation, 60 male rats of Wistar line were chosen. Rats were divided into 3 groups (20 in each) according to the number of types of experimental samples and within each group into subgroups (10 according to the time of elimination from the experiment: 15 and 30 days). The test samples were implanted in the paravertebral region to the laboratory animals. Testing of physical-mechanical characteristics was carried out according to standard methods for assessing the strength characteristics using a tensile testing machine REM-0.2-1. The elongation (%) of the implant canals after implantation at 8 N, 16 N was evaluated, the breaking load (N) was recorded.
Results. Samples of vascular patches of polyethylene terephthalate, which do not have additional treatment with gelatin in the production process (group 3), withstood the greatest breaking load - 147 N (on the 15th day of the experiment) and 151 N (30 day), respectively. The percentage of their elongation was from 6% to 49%. In the case of samples with gelatin treatment, it was 66, 5 N and 75 N.
Conclusions. The values of the indices of the studied parameters of the physical mechanical properties of polymeric vascular implants after implantation to laboratory animals are higher in the samples of the group 3 during all periods of the experiment (15 and 30 days).

Keywords: vascular patches, chronic experiment, bursting machine, extensibility, polyethylene terephthalate, implants, vascular surgery
p. 249-255 of the original issue
References
  1. Chazova IE, Oschepkova EV. The fight against cardiovascular diseases: problems and solutions at the present stage. Vestn Roszdravnadzora. 2015;(5):7-10. http://www.roszdravnadzor.ru/i/upload/images/2017/2/17/ 1487337800.13391-1-23766.pdf (in Russ.)
  2. Antonova LV, Sevostyanova VV, Seifalian AM, Matveeva VG, Velikanova EA, Sergeeva EA, Glushkova TV, Krivkina EO, Nasonova MV, Shishkova DK, Kudryavtseva YuA, Barbarash OL, Barbarash LS. Comparative in vitro testing of biodegradable vascular grafts for tissue engineering applications. Kompleks Problemy Serdech-Sosud Zabolevanii. 2015;(4):34-41. https://www.nii-kpssz.com/jour/article/view/149/144 (in Russ.)
  3. Popryadukhin PV, Popov GI, Dobrovolskaya IP, Yudin VE., Vavilov VN, Yukina GYu, Ivankova EM. Elaboration of matrix for tissue-engineering vascular implant based on aliphatic co-polyamide nano-fibers for childrens vascular surgery. Prakt Meditsina. 2017;(10):82-88. http://pmarchive.ru/el-arxiv/arxiv-za-2017-god/prakticheskaya-medicina-10-111-pediatriya/ (in Russ.)
  4. Zhukovsky VA. Polymer implants for reconstructive surgery. Innova. 2016;(2):51-59. doi: 10.21626/innova/2016.2/05 (in Russ.)
  5. Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2000 Feb;190(3):292-99. doi: 10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-S
  6. Li W, Xu K, Zhong H, Ni Y, Bi Y. A new unibody branched stent-graft for reconstruction of the canine aortic arch. Eur J Vasc Endovasc Surg. 2012 Aug;44(2):139-44. doi: 10.1016/j.ejvs.2012.05.015
  7. Hou LD, Li Z, Pan Y, Sabir M, Zheng YF, Li L. A review on biodegradable materials for cardiovascular stent application. Front Mater Sci. 2016 Sep;10(Is 3):238-59. doi: 10.1007/s11706-016-0344-x
  8. Ivchenko AO, Shvedov AN, Ivchenko OA. Vascular prostheses used in infrainguinal arterial reconstruction. Biul Sib Meditsiny. 2017;16(1):132-39. doi: 10.20538/1682-0363-2017-1-132139 (in Russ.)
  9. Yatigala NS, Bajwa DS, Bajwa SG. Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Compos Part A Appl Sci Manuf. 2018 Apr;107:315-25. doi: 10.1016/j.compositesa.2018.01.011
  10. Gostev AA, Laktionov PP, Karpenko AA. Sovremennye poliuretany v serdechno-sosudistoi khirurgii. Angiologiia i Sosud Khirurgiia. 2018;24(1):29-38. http://www.angiolsurgery.org/magazine/2018/1/3.htm (in Russ.)
  11. Novikova SP, Salokhedinova RR, Loseva SV, Nikolashina LN, Levkina AYu. Analysis of physico-mechanics and structural characteristics of vascular prostheses. Grudnaia i Serdech-Sosud Khirurgiia. 2012; (4):27-33. https://tcs-journal.com/catalog/detail.php?-SECTION_ID=822&ID=17864 (in Russ.)
  12. Kokorev OV, Khodorenko VN, Anikeev SG, Gunther VE. Biocompatibility Of Textile Titanium Nickel Implants With Fibroblast Culture. Biul Eksperim Biologii i Meditsiny. 2015;159(1):98-102. https://elibrary.ru/item.asp?id=22879593 (in Russ.)
  13. Ivanov AV, Lipatov VA, Lazarenko SV, Zherdev NN, Severinov DA. The influence of mechanical characteristics of vascular patches on the formation of capsules. Klin i Eksperim Khirurgiia. Zhurn im Akad BV Petrovskogo. 2016;4(1):51-57. https://cyberleninka.ru/article/n/vliyanie-mehanicheskih-harakteristik-sosudistoy-zaplaty-na-formirovanie-periproteznoy-kapsuly (in Russ.)
  14. Zhorzholiani ShT, Tsygankov IuM, Agafonov AV, Shepelev AD, Krasheninnikov SV, Gorodkov AIu, Bokeriia LA. Issledovanie mekhanicheskikh svoistv sosudistykh protezov, izgotovlennykh po tekhnologii elektrospininga, na gemodinamicheskom stende [Elektronnyi resurs]. XXIII Vseros sezd serdech-sosud khirurgov, 2017 Noiab 2629; Moscow [data dostupa 2017 Noiab 30]. Available from: https://racvs.ru/events/archive/xxiii_vserossiyskiy_sezd_serdechnososudistykh_khirurgov/issledovanie_mekhanicheskikh_svoystv_sosudistykh_protezov_izgotovlennykh_po_tekhnologii_elektrospini/ (in Russ.)
  15. Glushkova TV, Sevostyanova VV, Antonova LV, Klyshnikov KYu, Ovcharenko EA, Sergeeva EA, Vasyukov JYu, Seifalian AM, Barbarash LS. Biomechanical remodeling of biodegradable small-diameter vascular grafts in situ. Vestn Transplantologii i Iskusstv Organov. 2016;18(2):99-109. doi: 10.15825/1995-1191-2016-2-99-109 (in Russ.)
  16. Vinokur AA, Djakov V, Alukhanjan A. Comparative research of physicomechanical properties of new PTFE patches. Kuban Nauch Med Vestn. 2010;(8):40-46. https://cyberleninka.ru/article/n/sravnitelnoe-issledovanie-fiziko-mehanicheskih-svoystv-novyh-zaplat-iz-politetraftoretilena (in Russ.)
Address for correspondence:
305041, The Russian Federation,
Kursk, Karl Marks Str., 3,
Kursk State Medical University,
Department of Operative Surgery
and Topographic Anatomy,
Tel: +7 920 262-15-55,
e-mail: dmitriy.severinov.93@mail.ru,
Dmitriy A. Severinov
Information about the authors:
Lipatov Viacheslav A., MD, Associate Professor, Professor of the Department of Operative Surgery and Topographic Anatomy, Kursk State Medical University, Kursk, Russian Federation.
http://orcid.org/0000-0001-6121-7412
Lazarenko Sergey V., PhD, Assistant of the Oncology Department, Kursk State Medical University, Kursk, Russian Federation.
http://orcid.org/0000-0002-7200-4508
Betz Alexander N., Cardiovascular Surgeon, Kursk Regional Hospital, Kursk, Russian Federation.
https://orcid.org/0000-0001-6115-1812
Severinov Dmitriy A., Assistant of the Department of Operative Surgery and Topographic Anatomy, Kursk State Medical University, Kursk, Russian Federation.
http://orcid.org/0000-0003-4460-1353
Contacts | ©Vitebsk State Medical University, 2007