Р.М. САЛМИН, А.А. СТЕНЬКО, И.Г. ЖУК, М.Ю. БРАГОВ

ОСНОВНЫЕ НАПРАВЛЕНИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
В МЕДИЦИНЕ

УО «Гродненский государственный медицинский университет», Республика Беларусь

Приводится обзор механизма действия фотодинамической терапии, классификация фотосенсибилизаторов и ключевые направления применения метода в медицине. Выделены основные этапы процедуры фотодинамического воздействия. Представлена сравнительная характеристика фотосенсибилизаторов, сформулированы основные требования для их использования при фотодинамической терапии. Показаны успехи данного метода не только в онкологии, но и в лечении, профилактике инфекционных и неонкологических заболеваний. Дана краткая характеристика одному из наиболее динамично развивающихся направлений фотосенсибилизированного лечения — antimicrobной фотодинамической терапии. Обозначены преимущества фотодинамической терапии в сравнении с традиционными методами лечения, сформулированы перспективы и основные рекомендации, позволяющие значительно расширить показания к ее применению в медицине.

Ключевые слова: фотодинамическая терапия, фотосенсибилизаторы.

The review of the photodynamic therapy action mechanism, the classification of photo-sensitizers and the main tendencies of the method application in medicine is presented. The basic stages of the procedure of photodynamic influence are singled out. The comparative characteristic of photo-sensitizers and basic requirements for their use at photodynamic therapy are formulated. The successes of the given method are shown not only in oncology, but also in treatment and prophylaxis of infectious and non-oncological diseases. The brief characteristic of one of the most dynamically developing tendencies of photosensitized treatment — antimicrobial photodynamic therapy is given. The advantages of photodynamic therapy in comparison with traditional methods of treatment are designated, prospects and basic recommendations allowing considerably expand the indications to its application in medicine are formulated.

Keywords: photodynamic therapy, photo-sensitizers.

В настоящее время в большинстве стран мира наблюдается интенсивное внедрение лазерного излучения в биологических исследованиях и в практической медицине. Сегодня трудно себе представить развитие медицинской науки и практики без использования лазеров как для лечения, так и для диагностики многих заболеваний. Не менее значительна роль этой технологии для профилактических целей. Возможности ее в данном направлении неисчерпаемы [1, 2, 3, 4].

На сегодняшний день наиболее интенсивно развиваются следующие направления лазерной медицины: лазерная хирургия, лазерная терапия, лазерная диагностика и фотодинамическая терапия [5, 6, 7, 8]. Последнее довольно быстро нашло свое место в современной хирургии, гинекологии, дерматовенерологии и ока-
залось полезным в лечении больных раком различной стадии и локализации, а также в целом ряде неопухолевых заболеваний [9, 10, 11, 12].

Фотодинамическая терапия (ФДТ) – метод лечения, который заключается в применении специального химического вещества (фотосенсибилизатора), накапливающегося в патологическом очаге и инициирующегося благодаря облучению низкоинтенсивным лазерным излучением, с длинной волны соответствующей максимуму поглощения данного вещества [13, 14, 15, 16, 17].

При облучении сенсибилизированной ткани молекулы фотосенсибилизатора (ФС), поглощая квант излучения, переходят в возбужденное триплетное состояние и затем вступает в фотохимические реакции. При этом возможны три типа реакций [18, 19, 20, 21].

При первом типе молекулы ФС в триплетном состоянии взаимодействуют непосредственно с молекулами биологического субстрата. В результате этого взаимодействия образуются свободные радикалы – активные окислители биологических структур. При ФДТ окисление подвергаются в основном липидсодержащие структуры клетки – митохондриальные и клеточные мембраны, которые вначале фрагментируются, а при большой амплитуде реакций разрушаются, что и приводит к гибели клеток.

В реакциях второго типа энергия молекул возбужденного ФС сразу передается молекуле кислорода, в результате чего образуется синглетный кислород, который, будучи сильным окислителем биомолекул, еще более цитотоксичен для живых клеток, чем простые свободные радикалы. В фотодинамических процессах реакции первого типа играют незначительную роль, а основное значение придается реакции второго типа.

Третьим вариантом преобразования энергии, полученной при поглощении квантов излучения, является флуоресценция.

В процедуре ФДТ можно условно выделить 4 этапа. На первом этапе производится введение ФС, осуществляемое, как правило, внутривенно. На втором этапе происходит накопление ФС в патологическом очаге, вследствие особенности химического строения данного агента, а также в результате особенностей метаболизма в клетках данного агента. По мере аккумуляции химического соединения и повышения градиента контрастности облучения очага лазером сопровождается флуоресценцией патологических тканей. Появляется возможность точного определения истинных размеров очага или опухоли (включая зону скрытого роста), а также их томографии. Флуоресцентная диагностика с ФС может быть как самостоятельно выполняемой процедурой, так и этапом ФДТ. На третьем этапе происходит облучение пораженного участка лазерным излучением с длинной волны, соответствующей максимуму поглощения ФС. В очаге накопления ФС развиваются реакции, приводящие к гибели активно делящихся клеток и новообразованных сосудов. Четвертый этап заключается в рассасывании разрушенных клеток и замещении их нормальными клеточными элементами. Его продолжительность составляет до 4 недель [22].

В клинической практике широко применяются ФС, являющиеся разнообразными производными порфиринов и родственных ему макроциклов. При этом особый интерес представляют фотосенсибилизаторы, обладающие способностью не только быстро накапливаться в опухолях, но и с высокой скоростью распадаться [23, 24].

В соответствии с принятой классификацией ФС разделяются на три поколения [22, 25].

ФС первого поколения – производные
гематопорфира и его коммерческие варианты: фотогем (Россия), Фотофрин I, Фотофрин II (США, Канада), Фотосан (Германия), НРД (Китай) разрешены к клиническому применению [26, 27, 28]. Важным в развитии ФДТ явилась разработка фотосенсибилизатора с улучшенными свойствами — производного гематопорфира (НРД), так как сам гематопорфирин представляет собой смесь порфиринов и инертных примесей [29]. НРД оказался вдвое более токсичным, чем первоначальный препарат, и оказывал в 2 раза более выраженного фотодинамического эффект. Препарат, содержащий как минимум 80% активных фракций, известен как фотофрин II (Photofrin II), Photofor Sodium или Эфир ди-гематопорфирин (DHE). В настоящее время Фотофрин II является самым распространенным в мире фотосенсибилизатором [30]. Полным аналогом Фотофрин II в России является препарат Фотогем. При его введении в зависимости от типа опухоли может наблюдаться селективность 5–12 (отношение средней концентрации опухоли и окружающих тканей). Кроме того, стойкая задержка в коже даже минимальной концентрации фотосенсибилизатора требует от пациентов соблюдения ограниченного светового режима, т.е. предохрания от попадания на кожу яркого света, особенно солнечного, в течение 4–6 недель, чтобы избежать реакции кожи наподобие солнечного ожога [23, 31].

Анализ данных, полученных при применении ФДТ с ФС первого поколения, позволил сформулировать основные требования, предъявляемые к ФС последующих поколений [18, 25, 32]:
- низкая токсичность и световая токсичность в терапевтических дозах;
- высокая селективность накопления в тканях злокачественных новообразований и быстрое выведение ФС из кожи и эпителиальной ткани;
- сильное поглощение в спектральном диапазоне, где биологические ткани имеют наибольшее пропускание (красный и ближний ИК-диапазоны 660–1500нм);
- оптимум между величинами квантового выхода флуоресценции и квантового выхода интерконверсии, второй из которых определяет способность ФС и генерации синглетного кислорода, а первый — к возможности применения во флуоресцентной диагностике;
- высокий квантовый выход образования синглетного кислорода;
- доступность получения или синтеза, однородный химический состав;
- хорошая растворимость в воде или разрешенных для внутривенного введения жидкостях и кровезаменителях;
- стабильность при хранении.

ФС второго поколения (фталоцианины, нафталоцианины, бензопорфирин, хлорины, пурпурин, тиопурин, тексафирин, порфирин) в значительной мере удовлетворяют перечисленным требованиям [33, 34]. В течение последнего десятилетия в ФДТ, особенно в области, касающейся лечения онкологических заболеваний, большой интерес в качестве ФС вызывает тетрапиррольные соединения, в частности производные ряда хлорофила [24, 35].

Данные соединения малотоксичны, легко проникают через мембрану клетки, селективно накапливаются в опухолевой ткани. Противопорфирин и фталоцианины обладают оптимальными фотофизическими параметрами для их применения в клинических условиях в качестве фотодинамически активных соединений: обладают интенсивной полосой поглощения в длинноволновой области, оптимальным соотношением флуоресценция/интерконверсия и проявляют на порядок большую световую токсичность, чем большинство ФС, при отсутствии темновой токсичности. Общие токсические свойства при введении хлорино-
ных ФС в организм оказываются лучше, чем у порфириновых олигомеров или сульфиррованных фталоцианинов, а скорость выведения препаратов из организма не сравнимы: «Фотосен» и «Фотогем» сохраняются в организме на период более трёх месяцев против 2-х суток у водорастворимых хлориновых ФС [36, 37].

Впервые водорастворимые производные хлорофила предложил использовать для медицинских целей E. Snyder (США) в 1942 г. При пероральном или внутривенном применении хлориновых смесей, в основном содержащих хлори–E₉, были отмечены низкая токсичность, гипотензивное, антисклеротическое, спазмолитическое, обезболивающее, противовемматоидное действие [38]. При пероральном применении в дозах 1 г в день в течение 30 дней улучшались показатели биохимии крови, в частности, в 1,5–2 раза снижался уровень холестерина в крови. Это послужило показанием к использованию водорастворимых хлоринов для профилактики и лечения сердечно-сосудистых заболеваний, атеросклероза, ревматоидного артрита [23].

В настоящее время появляются ФС, которые по своим биологическим (токическим и фармакологическим) фотофизическим и химико-технологическим критериям относят к третьему поколению. Это, например, бактериохлорофилл-серин (Институт науки им. Вейсмanna, Реховот, Израиль) с рабочей длиной волны 770 нм. Спектрально препарат обеспечивает мощный выход синглетного кислорода и обладает приемлемым квантовым выходом флуоресценции в ближнем ИК-диапазоне [39].

Основная область применения ФДТ в медицине – это онкология, возможности которой значительно расширились с появлением данного метода. ФДТ – принципиально новый подход в лечении зло качественных новообразований, основанный на использовании фотодинамического повреждения опухолевых клеток в ходе фотохимической реакции. Локальность фотохимического повреждения опухоли обеспечивается интенсивностью накопления фотосенсибилизатора в опухолевой ткани и направленным, локальным, четко ограниченным лазерным облучением [6, 11, 13, 15, 16].

Общие показания к ФДТ злокачественных опухолей:

1. При начальных формах первичного рака и при ранних рецидивах ФДТ по радикальной программе, кроме того, больным с тяжелой сопутствующей патологией и выраженным возрастными изменениями, когда традиционные методы лечения (хирургическая операция, лучевая терапия) противопоказаны.

2. При далеко зашедших опухолевых процессах трубчатых органов (пищевод кардиальный отдел желудка, трахеи, главные, долевые и промежуточные бронхи, прямая кишка) ФДТ показана с целью реканализации как паллиативное лечебное мероприятие.

3. При запущенных опухолях с распадом, при внутрикожных метастазах ФДТ применяется с целью гемостаза и уменьшения объема опухолевой ткани в качестве комбинированного лечения с лучевой и полиходмитерапией.

ФДТ выгодно отличается от традиционных методов лечения злокачественных опухолей (хирургической операции, лучевой и химитерапии) высокой избирательностью поражения, отсутствием риска хирургического вмешательства, тяжелых местных и системных осложнений лечения, возможностью многократного повторения при необходимости лечебного сеанса и сочетании в одной процедуре флуоресцентной диагностики и лечебного воздействия. Кроме того, для ликвидации опухоли у большинства больных достаточного одного курса ФДТ, который к тому же можно проводить в амбулаторных условиях. Всевозрастающая роль лапароско-
пии в абдоминальной хирургии позволяет проводить дополнительное облучение светом через лапароскоп сразу после резекции опухоли и до формирования спаек, а предоперационная ФДТ применяется как один из вариантов повышения операбельности и уменьшения объема вмешательства [10, 11, 17, 40].

В последние годы ФДТ с использованием различных фотосенсибилизаторов успешно применена при целом ряде злокачественных новообразований, большинство из которых составляют опухоли кожи, нижней губы, языка, слизистой оболочки полости рта, гортани, легкого, мочевого пузыря, органов желудочно-кишечного тракта, гениталий и т.д. [6, 13, 18, 25, 28]. Общая эффективность лечения методом ФДТ достигает 90–95%, в том числе полная резорбция опухолей 55–60%. При лечении рака кожи с применением методов ФДТ отмечается 100% терапевтическая эффективность, включая полную регрессию (более 90% опухолевых очагов) и частичную регрессию (как правило, у больных с обширным опухолевым поражением кожи) [14].

Антимикробная фотодинамическая терапия (АФДТ) использует опыт, накопленный при ФДТ опухолей. Локальное распределение фотосенсибилизатора, локальное световое воздействие, применение световолоконной оптики и эндоскопической техники позволяют в некоторых случаях получить хороший клинический эффект. До сих пор наиболее активно исследуемой областью АФДТ являются исследования in vitro межклеточного взаимодействия активированного фотосенсибилизатора и возбудителя инфекционного заболевания. Исследованы практически все фотосенсибилизаторы и красители, все источники света и большинство возбудителей инфекционных заболеваний. Так, многие авторы уже сообщали о бактерицидном действии ФДТ на S. aureus, Streptococcus pyogenes, Clostridium perfringens, E. coli, Micoplasma hominis, Helicobacter pylori, и дрожжевые грибы [43, 44, 45].

Имеются данные о клиническом эффекте ФДТ в лечении вазотрофических нарушений при хронической венозной недостаточности нижних конечностей. На основании полученных результатов были сделаны выводы о выраженного антибактериальном эффекте ФДТ, ускорении некролитической фазы раневого процесса, появление активного грануляционного процесса и, в конечном итоге, ускорении в 1,5–2 раза сроков предоперационной подготовки больных к аутоодержампластике [9, 13, 46].

В литературе имеются сообщения об эффективности применения ФДТ для лечения и профилактики сердечно-сосудистых заболеваний, основой которых является атеросклероз магистральных артерий. ФДТ вызывает обратное развитие атеросклеротических бляшек, а также значительное подавление популяции макрофагов, участвующих в процессе развития окклюзии сосу-
дов атеросклеротическими бляшками, и некоторое уменьшение размера атероматозного ядра без повреждения нормальной ткани сосуда [47, 48]. При этом имело место уменьшение гиперплазии интимы и средней оболочки сосудистой стенки без явлений воспаления. Последнее является причиной ренестеноз, возникающих после оперативных вмешательств по поводу патологий артерий. ФС воздействует как непосредственно на клетки, находящиеся в интимальном утолщении, так и на компоненты соединительно-тканного матрикса (коллаген, эластин, протеогликаны), ведущие к гиперплазии интимы [49, 50].

Таким образом, возможности лечения заболеваний, в особенности онкологических, заметно расширились с появлением ФДТ. Проводимые в настоящее время исследования, основные направления которых очерчены в статье, должны не только повысить эффективность данного метода, но и значительно расширить показания к ее использованию. В свете этого чрезвычайно актуальной становится подготовка квалифицированных кадров, разработка соответствующих методических рекомендаций и дальнейшее расширение исследований по ФДТ.

ЛИТЕРАТУРА

5. Буйлин, В. А. Низкоинтенсивные лазеры в хирургии: реальность и перспективы / В. А. Буйлин, Е. И. Бrehов, В. Н. Брыков // Анналы хирургии. – 2003. – № 2. – С. 8-10.

44. Meso-Substituted cationic porphyrins as

Поступила 23.05.2008 г.