Novosti
Khirurgii
This journal is
indexed in Scopus









Year 2021 Vol. 29 No 4

SCIENTIFIC PUBLICATIONS
EXPERIMENTAL SURGERY

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.401   |  

I.V. MAIBORODIN 1, 2, A.A. SHEVELA 2, S.V. MARCHUKOV 2, V.V. MOROZOV 2, V.A. MATVEEVA 2, V.I. MAIBORODINA 1, A.M NOVIKOV 3, YU.V. TORNUEV 1, B.V. CHURIN 1, A.I. SHEVELA 2

PROLONGATION OF CLEANSING DAMAGED TISSUES FROM DETRITUS USING EXOSOMES OF MULTIPOTENT STROMAL CELLS

Federal Research Center of Fundamental and Translational Medicine of the Ministry of Science and Higher Education of the Russian Federation, Institute of Molecular Pathology and Pathomorphology 1,
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch 2,
Research Institute of Clinical and Experimental Lymphology 3, Novosibirsk,
The Russian Federation

Objective. To study the effect of exosomes of multipotent mesenchymal stromal cells (EMSCs) on soft tissues damaged during implantation of a metal screw into the bone.
Methods. A defect (2 mm in diameter and 4 mm in depth) was created in the tibial proximal condyles of outbred rabbits. Metal screws were implanted into the defect by preliminary injection of saline (control, n=9 animals) or 19.2 μg of EMSCs per limb (experiment, n=10 rabbits). After 3, 7 and 10 days following the operation, the animals were taken out from the experiment; histological sections of soft tissues from the condyle surface, stained by hematoxylin and eosin were studied using light microscopy.
Results. The use of water cooling in the process of introducing the metal implant into the tibial proximal condyle does not lead to complete removal of small bone fragments, which are subsequently either eliminated outward with wound discharge, or are destroyed and are subjected to lysis by macrophages. As a result of the EMSC effect on soft tissues near the site of damage, the activity of the postoperative inflammation reduces, leads to a slowdown in the resorption of hemorrhages, the elimination of fibrin clots, detritus and small bone fragments. Even on the 10th day after using EMSCs in the postoperative wound a structureless detritus with a small number of infiltrating cells was present, as well as a significant number of multinucleated macrophages with fused cytoplasm, non-viable lysed striated muscle symplasts and bone fragments with a low degree of degradation.
Conclusion. Suppression of inflammation by EMSCs delays the clearance of the postoperative wound, promotes the prolongation of the repair process and the attachment of the granulomatous component to the inflammation. The using EMSCs in the process of intraosseous implantation may be recommended only to control the activity of the inflammatory process and only after maximum preliminary cleansing of the postoperative wound from detritus, including non-viable muscle tissue and bone fragments.

Keywords: damaged tissues, exosomes of multipotent mesenchymal stromal cells, regeneration, inflammation, macrophages
p. 401-411 of the original issue
References
  1. Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density. J Periodontol. 2014 Jul;85(7):984-90. doi: 10.1902/jop.2013.130475
  2. Conklin LS, Hanley PJ, Galipeau J, Barrett J, Bollard CM. Intravenous mesenchymal stromal cell therapy for inflammatory bowel disease: Lessons from the acute graft versus host disease experience. Cytotherapy. 2017 Jun;19(6):655-667. doi: 10.1016/j.jcyt.2017.03.006
  3. Bahrami B, Hosseini A, Talei AR, Ghaderi A, Razmkhah M. Adipose derived stem cells exert immunomodulatory effects on natural killer cells in breast cancer. Cell J. 2017 Apr-Jun;19(1):137-45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241510
  4. Abdelhamid L, Hussein H, Ghanem M, Eissa N. Retinoic acid-mediated anti-inflammatory responses in equine immune cells stimulated by LPS and allogeneic mesenchymal stem cells. Res Vet Sci. 2017 Oct;114:225-32. doi: 10.1016/j.rvsc.2017.05.006
  5. Qu M, Yuan X, Liu D, Ma Y, Zhu J, Cui J, Yu M, Li C, Guo D. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control During Acute Hepatitis B Virus Infection in Mice. Stem Cells Dev. 2017 Jun 1;26(11):818-27. doi: 10.1089/scd.2016.0348
  6. Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, Camussi G. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014 May;33(5):1055-63. doi: 10.3892/ijmm.2014.1663
  7. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015 Oct;4(10):1131-43. doi: 10.5966/sctm.2015-0078
  8. Maiborodin IV, Shevela AA, Marchukov SV, Morozov VV, Matveeva VA, Maiborodina VI, Novikov AM, Shevela AI. Regeneration of the bone defect at experimental application of extracellular microvesicles from multipotent stromal cells. Novosti Khirurgii. 2020;28(4):366-69. doi: 10.18484/2305-0047.2020.4.359 (In Russ.)
  9. Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, Casado JG. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014 Nov 4;5:556. doi: 10.3389/fimmu.2014.00556. eCollection 2014.
  10. Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016 Dec;24(12):2135-40. doi: 10.1016/j.joca.2016.06.022
  11. Sun X, Xu M, Cao Q, Huang P, Zhu X, Dong X. A lysosomalK(+) channel regulates large particle phagocytosis by facilitating lysosome Ca(2+) release. Sci Rep. 2020;10(1):1038. doi: 10.1038/s41598-020-57874-2
  12. Simonson OE, Mougiakakos D, Heldring N, Bassi G, Johansson HJ, Dalén M, Jitschin R, Rodin S, Corbascio M, El Andaloussi S, Wiklander OP, Nordin JZ, Skog J, Romain C, Koestler T, Hellgren-Johansson L, Schiller P, Joachimsson PO, Hägglund H, Mattsson M, Lehtiö J, Faridani OR, Sandberg R, Korsgren O, Krampera M, Weiss DJ, Grinnemo KH, Le Blanc K. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med. 2015 Oct;4(10):1199-213. doi: 10.5966/sctm.2015-0021
  13. Tan JL, Lau SN, Leaw B, Nguyen HPT, Salamonsen LA, Saad MI, Chan ST, Zhu D, Krause M, Kim C, Sievert W, Wallace EM, Lim R. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl Med. 2018 Feb;7(2):180-96. doi: 10.1002/sctm.17-0185
  14. Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, Acovic A, Djonov V, Arsenijevic N, Volarevic V. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product Exo-d-MAPPS in attenuation of chronic airway inflammation. Anal Cell Pathol (Amst). 2020 Mar 20;2020:3153891. doi: 10.1155/2020/3153891. eCollection 2020.
Address for correspondence:
630090, Russian Federation,
Novosibirsk, Ak. Lavrentyev Avenue, 8,
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences,
Siberian Branch Center of New Medical Technologies
tel.: +7-913-753-0767
e-mail: imai@mail.ru
Maiborodin Igor V.
Information about the authors:
Maiborodin Igor V., MD, Professor, Chief Researcher of the Laboratory of Cell Biology and Cytology, Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine of the Ministry of Science and Higher Education of the Russian Federation, Chief Researcher of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-8182-5084
Shevela Aleksandr A., Ph.D, Doctoral Student, the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0001-9235-9384
Marchukov Sergey V., Ph.D, Doctoral Student, the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-7381-5820
Morozov Vitaly V., MD, Professor, Head of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-9810-5593
Matveeva Vera A., PhD, Senior Researcher of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-8706-4853
Maiborodina Vitalina I., MD, Leading Researcher, the Laboratory of Ultrastructural Basis of Pathology, Institute of Molecular Pathology and Pathomorphology, Federal ResearchCenter for Fundamental and Translational Medicine of the Ministry of Science and Higher Education of the Russian Federation, Novosibirsk, Russian Federation.
http://orcid.org/0000-0002-5169-6373
Novikov Alexey M., Junior Researcher, the Laboratory of Cell Technology, Institute of Clinical and Experimental Lymphology, the Branch of the Federal State Budgetary Scientific Institution Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, The Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0003-1371-7492
Tornuev Yury V., MD (Biol), Professor, Chief Researcher, the Laboratory of General Pathology and Pathomorphology, Institute of Molecular Pathology and Pathomorphology, Federal State Budgetary Scientific Institution Federal Research Center for Fundamental and Translational Medicine of the Ministry of Science and Higher Education of the Russian Federation, Novosibirsk, Russian Federation.
http://orcid.org/0000-0001-8629-8909
Churin Boris V., MD, Professor, Chief Researcher, the Laboratory of Cell Biology and Cytology, Institute of Molecular Pathology and Pathomorphology, Federal State Budgetary Scientific Institution Federal Research Center for Fundamental and Translational Medicine of the Ministry of Science and Higher Education of the Russian Federation, Novosibirsk, Russian Federation.
http://orcid.org/0000-0001-9742-6152
Shevela Andrey I., MD, Professor, Head of Department Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0002-3164-9377

GENERAL & SPECIAL SURGERY

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.412   |  

V.I. PETUKHOV 1, V.I. DERKACH 1, S.N. ERMASHKEVICH 1, M.V. KUNTSEVICH 1, A.P. KUTKO 2

ANGIOPULMONOGRAPHY WITH NITROGLYCERIN TEST IN THE DIAGNOSIS OF ACUTE INFECTIOUS LUNG DESTRUCTION

Vitebsk State Medical University 1,
Vitebsk Regional Clinical Hospital 2, Vitebsk,
The Republic of Belarus

Objective. To develop a method for additional and differential diagnosis of acute infectious lung destruction (AILD) based on angiopulmonography with the nitroglycerin test.
Methods. Angiopulmonography with the nitroglycerin test was used in 10 patients with suppurative diseases of the lung and pleura for additional and differential diagnosis of AILD The method was used in such situations when chest computed tomography did not allow to determine unambiguously the presence and / or prevalence of necrosis of the lung parenchyma.
Results. In 3 patients with the lung abscess, a clear restriction of the decay cavity was registered with the preservation of the main blood flow and weakening of the parenchymal phase of the blood circulation along the periphery of the destructive area.
During the nitroglycerin test performance there was no change in the filling of the microvascular bed with contrast along the periphery of the decay cavity, which made it possible to determine the presence of parietal sequesters. According to the results of the study, the lung gangrene was diagnosed in 6 patients. At the same time, two variants of circulatory disorders were noted: the first - with preservation of the blood flow through the main vessels and with the absence of a parenchymal phase in the lesion focus, the second - with the violation of the main blood flow. In the affected area no change in blood flow was observed after the nitroglycerin test performance. Similar results of the study indicated the development of necrosis of the pulmonary parenchyma, which was subsequently confirmed during the operations performed. In the site of inflammatory infiltration of the pulmonary parenchyma with preserved main blood flow, the depletion of the parenchymal phase of blood circulation was determined, but after the nitroglycerin test, a pronounced enrichment of the vascular architecture to the parenchymal phase in the pneumonia affecting part of the lung was noted.
Conclusion. It has been established that AILD is characterized by irreversible changes in the vascular bed of the lung parenchyma in the lesion focus. Angiopulmonography with the nitroglycerin test is considered to be an additional highly informative method improving the early and differential diagnosis of AILD in difficult clinical situations.

Keywords: angiopulmonography, nitroglycerin test, diagnostics, pneumonia, acute infectious lung destruction
p. 412-419 of the original issue
References
  1. Informatsionnyi biulleten VOZ. 10 vedushchikh prichin smerti v mire. Dek 2020 g. [Elektronnyi recurs]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death (in Russ).
  2. Subotic D. Lung Abscess. In: Parikh D, Rajesh P (eds). Tips and Tricks in Thoracic Surgery. Springer Verlag, London; 2018. . 125-44. doi: 10.1007/978-1-4471-7355-7
  3. Dunaev AP. Luchevaia diagnostika ostrykh destruktivnykh vospalitelnykh protsessov v legkikh. Moscow, RF: Vidar M; 2016. 104 p. (in Russ).
  4. Duncan C, Nadolski GJ, Gade T, Hunt S. Understanding the lung abscess microbiome: outcomes of percutaneous lung parenchymal abscess drainage with microbiologic correlation. Cardiovasc Intervent Radiol. 2017 Jun;40(6):902-906. doi: 10.1007/s00270-017-1623-3
  5. Karmazanovskii GG, Starostina NS, Kosova IA. KT-semiotika gnoino-destruktivnykh protsessov v grudnoi kletke: pokazaniia k khirurgicheskomu lecheniiu. Moscow, RF: Izd. dom Vidar-M; 2012. 98 p. (in Russ).
  6. Ovchinnikov AA. Ostrye i khronicheskie gnoinye zabolevaniia legkikh. RMZh.2002;10(23):1073-79. https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Ostrye_i_hronicheskie_gnoynye_zabolevaniya_legkih (in Russ).
  7. Yasnogorodsky OO, Gostishev VK, Shulutko AM, Pinchuk TP, Struchkov YuV, Taldykin MV, Nasirov FN, Mochalov VA. Lung abscess and gangrene: evolution of treatment methods Novosti Khirurgii. 2020 Mar-Apr; Vol 28 (2): 150-158 doi: 10.18484/2305-0047.2020.2.150. (in Russ).
  8. Tiurin IE. Kompiuternaia tomografiia organov grudnoi polosti. S-Peterburg, RF: Elbi-SPb; 2003. 371 p. (in Russ).
  9. Karpushkina PI, Avdeeva NA, Pigachev AV. Vliianie AUFOK na kharakter legochnogo krovotoka u bolnykh s ostrymi destruktivnymi zabolevaniiami legkikh. Sovrem Tendentsii Razvitiia Nauki i Tekhnologii. 2015;(2-2):29-32. https://www.elibrary.ru/item.asp?id=23702514 (in Russ).
  10. Speranskaia AA. MSKT-angiografiia i OFEKT v otsenke prichin neblagopriiatnogo techeniia redkikh interstitsialnykh zabolevanii legkikh (limfangioleiomiomatoz, gistiotsitoz Kh). Regionar Krovoobrashchenie i Mikrotsirkuliatsiia. 2013;12(1):58-64. doi: 10.24884/1682-6655-2013-12-1-58-64 (in Russ).
  11. Stolyarova NA, Sadchikova GD. Intensive care for severe acute pneumonia, by using hemodynamic pulmonary circulatory unloading. Anesteziologiia i Reanimatologiia. 2005;60(4):46-49. https://www.elibrary.ru/item.asp?id=9212313 (in Russ.)
Address for correspondence:
210009, Republic of Belarus,
Vitebsk, Frunze Av., 27,
Vitebsk State Medical University,
the Department of Hospital Surgery with the Course of the Advanced Training and Personnel Retraining
tel. mobile: + 375 29 890 64 42,
e-mail: derkach_v1991@mail.ru,
Derkach Vladislav I.
Information about the authors:
Petukhov Vladimir I., MD, Professor, Head of the Department of Hospital Surgery with the Course of the Advanced Training and Personnel Retraining, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-4042-3978
Derkach Vladislav I., Post-Graduate Student of the Department of Hospital Surgery with the Course of the Advanced Training and Personnel Retraining, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0001-9440-9031
Yermashkevich Siarhei N., PhD, Associate Professor of the Department of Hospital Surgery with the Course of the Advanced Training and Personnel Retraining, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-0866-9070
Kuntsevich Maksim V., Assistant of the Department of Hospital Surgery with the Course of the Advanced Training and Personnel Retraining, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-8122-6655
Kutko Andrey P., Head of the Endovascular Surgery Department, Vitebsk Regional Clinical Hospital, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0001-8484-3651
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.420   |  

R.E. KALININ, I.A. SUCHKOV, A.V. SCHULKIN, E.A. KLIMENTOVA, A.A. EGOROV

INFLUENCE OF VARIOUS SURGICAL INTERVENTIONS ON VASCULAR WALL APOPTOSIS INDICES IN PATIENTS WITH ATHEROSCLEROSIS OF PERIPHERAL ARTERIES

I.P. Pavlov Ryazan State Medical University, Ryazan,
Russian Federation

Objective. Assessment of apoptosis proteins Bcl-2 and Bax indices before and after the open vascular reconstructions and X-ray endovascular interventions in patients with the peripheral atherosclerosis of the arteries of the lower extremities.
Methods. The study included patients (n=40) with the peripheral atherosclerosis of the lower extremities arteries (stage III-IV) disease who underwent open surgery group A, and patients (n=40) who underwent endovascular interventions group B. Two apoptosis proteins were analyzed in blood serum: Bax and Bcl-2 initially before surgery, on the 1st day and after 1 month. The reference values of the studied parameters were determined in 40 healthy volunteers.
Results. Initial Bax protein index 27.1 ng / ml (<0,001) were elevated in patients of group A and reduced Bax protein 4.4 ng / ml (p=0.00008) in patients of group B compared with indices of healthy volunteers (16.5 ng / ml, 5.3 ng / ml, respectively). On the 1st day after the interventions in the patients of the operative groups there was an increasing tendency for Bax index to 35.6 ng / ml (p<0.001) group A, to 25.6 ng/ml (p<0.001) group B. By the end of 1st month, Bax was increased to 28 ng/ml (p<0.001) in patients of group A and Bcl-2 was reduced to 3.0 ng / ml (p=0.039) compared to the initial indices; in patients of group B, only protein Bax 23.9 ng / ml (p<0.001) was increased.
Conclusion. Open and endovascular intervention on the arteries of the lower extremities leads to the activation of the pro-apoptotic protein Bax on the 1st day after surgery. In the postoperative period the open reconstruction leads to an evaluation of the pro-apoptotic potential in comparison with endovascular intervention in the form of increasing Bax protein and reducing Bcl-2 by the end of the first month.

Keywords: apoptosis, peripheral arterial atherosclerosis, apoptosis proteins, Bc-l2, Bax
p. 420-425 of the original issue
References
  1. Alekian BG, Pokrovskii AV, Karapetian NG, Revishvili ASh. Sovremennye tendentsii razvitiia khirurgicheskogo i endovaskuliarnogo lecheniia bolnykh s arterialnoi patologiei. Angiologiia i Sosudistaia Khirurgiia. 2019;25(4):55-63. http://www.angiolsurgery.org/magazine/2019/4/5.htm (In Russ.)
  2. Batyraliev TA, Fettser DV, Sidorenko BA, Boduroglu Y, Dokumaci B. Effect of design of standard metallic stents on neointimal hyperplasia and restenosis. rdiologiia. 2014,54(2):75-78. (n Russ.)
  3. Strelnikova EA, Trushkina PIu, Surov IIu, Korotkova NV, Mzhavanadze ND, Deev RV. Endothelium in vivo and in vitro. Part 1: histogenesis, structure, cytophysiology and key markers. Nauka Molodykh (Eruditio Juvenium). 2019,7(3):450-65. doi: 10.23888/HMJ201973450-465 (n Russ.)
  4. Egorova IE, Bakhtairova VI, Suslova AI. Molecular mechanisms of apoptosis involved in the development of different pathological processes Innovatsionnye Tenokhlogii v Farmatsii. 2019;(6):108-14. https://elibrary.ru/item.asp?id=38363905 ()n Russ.)
  5. Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, Bennett MR. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008 Jun 20;102(12):1529-38. doi: 10.1161/CIRCRESAHA.108.175976
  6. Kutuk O, Basaga H. Bcl-2 protein family: implications in vascular apoptosis and atherosclerosis. Apoptosis. 2006 Oct;11(10):1661-75. doi: 10.1007/s10495-006-9402-7
  7. Hockings C, Alsop AE, Fennell SC, Lee EF, Fairlie WD, Dewson G, Kluck RM. Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death Differ. 2018 Mar;25(4):721-34. doi: 10.1038/s41418-017-0010-6
  8. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998 Jun 16;97(23):2307-15. doi: 10.1161/01.cir.97.23.2307
  9. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995 Jun 1;91(11):2703-11. doi: 10.1161/01.cir.91.11.2703.
  10. Spiguel LR, Chandiwal A, Vosicky JE, Weichselbaum RR, Skelly CL. Concomitant proliferation and caspase-3 mediated apoptosis in response to low shear stress and balloon injury. J Surg Res. 2010 Jun 1;161(1):146-55. doi: 10.1016/j.jss.2008.11.001
  11. Walsh K, Smith RC, Kim HS. Vascular cell apoptosis in remodeling, restenosis, and plaque rupture. Circ Res. 2000 Aug 4;87(3):184-88. doi: 10.1161/01.res.87.3.184
  12. Vladimirskaya TE, Shved IA, Demidchik YuE. Ratio of expression of the Bcl-2 and Bax proteins in the atherosclerotic coronary artery wall. Proceedings of the National Academy of Sciences of Belarus, Medical Series. 2015;(4):51-55. https://vestimed.belnauka.by/jour/article/view/213?locale=ru_RU (In Russ.)
  13. Wan L, Dai SH, Lai SQ, Liu LQ, Wang Q, Xu H, Wang WJ, Liu JC. Apoptosis, proliferation, and morphology during vein graft remodeling in rabbits. Genet Mol Res. 2016 Oct 5;15(4). doi: 10.4238/gmr.15048701
  14. Kalinin R.E., Suchkov I.A., Klimentova .A., et al. Apoptosis in vascular pathology: present and future. I.P. Pavlov Russian Medical Biological Herald. 2020;28(1):79-87. doi: 10.23888/PAVLOVJ202028179-87 (In Russ.)
Address for correspondence:
390026, Russian Federation,
Ryazan, Vysokovoltnaya Str., 9,
Ryazan State Medical University,
the Department of Cardiovascular,
X-ray Endovascular,
Operative Surgery and Topographic Anatomy,
tel.: +7 903836-24-17,
e-mail: Suchkov_med@mail.ru,
Suchkov Igor A.
Information about the authors:
Kalinin Roman E., MD, Professor, Rector, Head of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy, I.P. Pavlov Ryazan State Medical University, Ryazan, Russian Federation.
https://orcid.org/0000-0002-0817-9573
Suchkov Igor A., MD, Professor, Vice-Rector for Research and Innovative Development, Professor of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy, I.P. Pavlov Ryazan State Medical University, Ryazan, Russian Federation.
https://orcid.org/0000-0002-1292-5452.
Shchulkin Aleksey V., MD, Associate Professor of the Department of Pharmacology with the Course of Pharmacy of Continuing Professional Education Faculty, I.P. Pavlov Ryazan State Medical University, Ryazan, Russian Federation.
https://orcid.org/0000-0003-1688-0017
Klimentova mma A., PhD, Post-Graduate Student of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy, I.P. Pavlov Ryazan State Medical University, Ryazan, Russian Federation.
https://orcid.org/0000-0003-4855-9068
Egorov Andrey A., MD, Associate Professor of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy, I.P. Pavlov Ryazan State Medical University, Ryazan, Russian Federation.
https://orcid.org/0000-0003-0768-7602
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.426   |  

O.M. KLIMOVA 1, V.V. BOYKO 1, L.A. DROZDOVA 1, O.V. LAVINSKA 1, D.V. MINUKHIN 2, A.N. KUDREVICH 3

PROGNOSTIC MARKERS IN PATIENTS WITH THYMUS-INDEPENDENT AND THYMUS-DEPENDENT MYASTHENIA GRAVIS

Kharkiv National Medical University 2,
V. N. Karazin Kharkov National University 3, Kharkov,
Ukraine

Objective. To assess the presence of specific markers in patients with thymus-independent and thymus-dependent myasthenia gravis for choosing treatment tactics.
Methods. The presence of specific markers was assessed in 138 patients with thymus-independent (M myasthenia gravis without thymus changes) and thymus-dependent (MH myasthenia gravis with thymus hyperplasia, MT myasthenia gravis with thymoma). The method ELISA (the content of antibodies to subunits 1 and 7 nAChR in blood serum, to 7 nAChR subunit in thymocyte mitochondria, a detectable level of antinuclear antibody (ANA), immunofluorescence (ANA glow) and flow cytometry (expression of CD14+CD11c+and CD14 + HLA-DR +) has been used.
Results. The relationship between the clinical phenotypes of myasthenia gravis and the variants of HLA diplotypes was revealed: in young patients with thymus-independent myasthenia gravis (M), a high heterogeneity of the genotypic markers HLA-DR (DR1, DR2, DR3, DR5, DR7) was detected. Patients with thymus-dependent myasthenia (MT) had only the HLA DR2 and HLA DR7 diplo- and haplotypes. The presence of HLA DR2 and HLA DR7 haplotypes in some young patients with progressive thymus-independent myasthenia gravis (M) led to the development of myasthenia gravis with thymoma (MT) in the elderly people. The pathogenic role also belongs to infection (MV, EBV, HBV, HCV, HSV-1, HSV-2, HHV-6, mycoplasma) and food intolerance (IgE and IgG4) in the development and progression of myasthenia gravis. A four-fold prevalence of α7 subunit nicotinic acetylcholine receptors on the thymocyte mitochondria as an additional targets of autoimmune aggression in myasthenia gravis was determined. Specific antinuclear antibodies to centromere chromosome proteins were visualized in the elderly people with thymoma.
Conclusion. The prognosis of the myasthenia gravis progression and the development of remission can be made using genomic (the presence of certain HLA-DR haplotypes) and molecular (ANA antibodies to centromere chromosome proteins, expression of CD20+, CD14+CD11c+, CD14+HLA-DR+) biomarkers, that can be used for the choice of treatment tactics.

Keywords: myasthenia gravis, thymus hyperplasia, thymoma, antinuclear antibodies, differentiation cluster
p. 426-433 of the original issue
References
  1. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010 Jun 18;10:46. doi: 10.1186/1471-2377-10-46
  2. Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res. 2016 Jun 27;5:F1000 Faculty Rev-1513. doi: 10.12688/f1000research.8206.1. eCollection
  3. Klimova EM, Minuchin DV, Drozdova LA, Lavinskaya EV, Kordon TI, Kalashnykova YV. Features of self-tolerance loss in patients with different clinical phenotypes of myasthenia. Regul Mech Biosyst. 2018;9(4):561-67. doi: 10.15421/021884
  4. Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of Myasthenia Gravis. Neurol Clin. 2018 May;36(2):311-37. doi: 10.1016/j.ncl.2018.01.011
  5. Schreuder GM, Hurley CK, Marsh SG, Lau M, Fernandez-Vina M, Noreen HJ, Setterholm M, Maiers M. The HLA Dictionary 2004: a summary of HLA-A, -B, -C, -DRB1/3/4/5 and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR and -DQ antigens. Int J Immunogenet. 2005 Feb;32(1):19-69. doi: 10.1111/j.1744-313X.2005.00497.x
  6. Gergalova GL, Lehmus OJ, Skok MV. Possible effect of activation of α7-nicotinic acetylcholine receptors in the mitochondrial membrane on the development of apoptosis. Neurophysiology. 2011;43(3):195-197. doi: 10.1007/s11062-011-9203-7
  7. Luider J, Cyfra M, Johnson P, Auer I. Impact of the new Beckman Coulter Cytomics FC 500 5-color flow cytometer on a regional flow cytometry clinical laboratory service. Lab Hematol. 2004;10(2):102-8. doi: 10.1532/LH96.04121
  8. Klimova EM, Lavinskaya EV, Minukhin DV, Syrovaya AO, Drozdova LA, Samoilova AP, krov VV, krov VA, Lukiyanova LV. On forming central and peripheral markers of self-tolerance loss in diverse clinical myasthenic phenotypes. Der Pharmacia Lettre. 2017;9(6):8-17. http://scholarsresearchlibrary.com/archive.html
  9. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013 Jan;137(1):22-54. doi: 10.1016/j.pharmthera.2012.08.012
  10. Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, OConnor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018 Feb;57(2):172-84. doi: 10.1002/mus.25973
  11. Drutman SB, Kendall JC, Trombetta ES. Inflammatory spleen monocytes can upregulate CD11c expression without converting into dendritic cells. J Immunol. 2012 Apr 15;188(8):3603-10. doi: 10.4049/jimmunol.1102741
Address for correspondence:
61103, Ukraine,
Kharkov, Balakireva vyizd, 1,
V.T. Zaycev Institute of General and Urgent Surgery of National Academy of Medical Sciences of Ukraine,
Diagnostic Laboratory,
Tel. +38(057)3494115,
E-mail: klimovalena53@gmail.com,
Klimova Olena M.
Information about the authors:
Klimova Olena MD (Biol.), Professor, Head of the Diagnostic Laboratory with Enzyme Immunoassay and Immunofluorescence Analysis, V.T. Zaycev Institute of General and Urgent Surgery of NAMS of Ukraine, Kharkov, Ukraine.
https://orcid.org/0000-0002-4007-6806
Boyko Valery V., Corresponding Member of National Academy of Medical Sciences of Ukraine, MD, Professor, Director of V.T. Zaycev Institute of General and Urgent Surgery of National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine. https://orcid.org/0000-0003-4771-9699
Drozdova Larisa ., Candidate of Biological Sciences, Senior Researcher, the Diagnostic Laboratory with Enzyme Immunoassay and Immunofluorescence Analysis, V.T. Zaycev Institute of General and Urgent Surgery of NAMS of Ukraine, Kharkov, Ukraine.
https://orcid.org/0000-0001-9678-4046
Lavinska Olena V., PhD(Biol.), Researcher, the Diagnostic Laboratory with Enzyme Immunoassay and Immunofluorescence Analysis, V.T. Zaycev Institute of General and Urgent Surgery of NAMS of Ukraine, Kharkov, Ukraine.
https://orcid.org/0000-0001-5813-3656
Minukhin Dmitriy V., PhD, Associate Professor Of The Surgery Department No1, V.N. Karazin Kharkiv National Medical University, Kharkov, Ukraine https://orcid.org/0000-0003-3371-1178
Kudrevych Oleksandr M., PhD, Associate Professor, Head of the Department of Surgical Diseases, Operative Surgery and Topographical Anatomy, V.N. Karazin Kharkiv National Medical University, Kharkov, Ukraine
https://orcid.org/0000-0002-2086-8822
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.434   |  

V.V. BALYTSKYY 1, 2, M.P. ZAKHARASH 3, .G. URYK 3, Y.M. ZAKHARASH 3

SURGICAL TREATMENT OF COMBINED ANORECTAL PATHOLOGY USING CURRENT TECHNOLOGIES

N.I. Pirogov Vinnitsa National Medical University 1, Khmelnitsky,
Khmelnitsky Regional Hospital 2, Khmelnitsky,
A.A. Bogomolets National Medical University 3, Kiev,
Ukraine

Objective. To evaluate the effectiveness of application radio-wave surgery device Surgitron and high-frequency electrosurgery devices ERBE ICC 200, EFA, KLS Martin for treatment of patients with combined anorectal pathology.
Methods. The treatment results of patients (n=635) with a combined anorectal pathology have been analyzed. The use of the Surgitron radio-wave surgery apparatus 245 (38.6%) patients were operated on, the ERBE ICC 200 high-frequency electrosurgery apparatus - 169 (26.6%) patients, the EFA high-frequency electrosurgery apparatus 114 (17.9 %) patients, KLS Martin high-frequency electrosurgery apparatus 107 (16.9%) patients. After those surgical interventions to assess the effectiveness of the abovementioned current technologies, patients were conducted a morphological examination to determine the depth of the necrosis of tissues.
Results. According to the study results it has been established that application of the Surgitron radio-wave surgery device, ERBE ICC 200 high-frequency electrosurgical devices EFA, KLS Martin reduces duration of the operation up to 15-30 min, the volume of bleeding - up to 10-30 ml, need in narcotic drugs - up to 1-4 ml, period of hospitalization up to 3-6 days. Using these technologies prevented the formation of anal strictures and scar pararectal deformations due to the insignificant depth of tissue necrosis (the depth 0,036 -l 0,453 mm), ensuring the cosmetic effect of combined operations.
Conclusion. Application of the Surgitron radio-wave surgery device and ERBE ICC 200 high-frequency electrosurgical devices, EFA, KLS Martin for treatment of patients with combined anorectal pathology reduces the operation duration, volume of bleeding and intensity of the postoperative pain. Use of these current technologies promotes the formation of a delicate elastic scar causing faster healing of postoperative wounds and improving the terms of patients rehabilitation.

Keywords: combined pathology, anal canal, rectum, high-frequency electrosurgery devices, radio- wave surgery device
p. 434-444 of the original issue
References
  1. Bach HH 4th, Wang N, Eberhardt JM. Common anorectal disorders for the intensive care physician. J Intensive Care Med. 2014 Nov-Dec;29(6):334-41. doi: 10.1177/0885066613485347
  2. Borota AV, Kukhto AP, Baziian-Kukhto NK, Borota AA. Comparative analysis of surgical treatment of the combined non-tumor anorectal pathology. Novoobrazovanie (Neoplasm). 2018;10(1):18-22. doi: 10.26435/neoplasm.v10i1.242 (In Russ.)
  3. Raiymbekov OR, Zholbolduev ZhM, Aidarov UA. Sovremennye vzgliady na diagnostiku i lechenie pararektalnogo svishcha v sochetanii s khronicheskim gemorroem. Koloproktologiia. 2017;(3s Pril):37-38. https://www.ruproctology.com/jour/article/view/1360?locale=ru_RU In Russ.)
  4. Wald A, Bharucha AE, Cosman BC, Whitehead WE. ACG clinical guideline: management of benign anorectal disorders. Am J Gastroenterol. 2014 Aug;109(8):1141-57; (Quiz) 1058. doi: 10.1038/ajg.2014.190
  5. Rivadeneira DE, Steele SR, Ternent C, Chalasani S, Buie WD, Rafferty JL; Standards Practice Task Force of The American Society of Colon and Rectal Surgeons. Practice parameters for the management of hemorrhoids (revised 2010). Dis Colon Rectum. 2011 Sep;54(9):1059-64. doi: 10.1097/DCR.0b013e318225513d
  6. Xu L, Chen H, Lin G, Ge Q. Ligasure versus Ferguson hemorrhoidectomy in the treatment of hemorrhoids: a meta-analysis of randomized control trials. Surg Laparosc Endosc Percutan Tech. 2015 Apr;25(2):106-10. doi: 10.1097/SLE.0000000000000136
  7. Lohsiriwat V. Treatment of hemorrhoids: A coloproctologists view. World J Gastroenterol. 2015 Aug 21;21(31):9245-52. doi: 10.3748/wjg.v21.i31.9245
  8. Lohsiriwat V. Anorectal emergencies. World J Gastroenterol. 2016 Jul 14;22(26):5867-78. doi: 10.3748/wjg.v22.i26.5867
  9. Esfahani MN, Madani G, Madhkhan S. A novel method of anal fissure laser surgery: a pilot study. Lasers Med Sci. 2015 Aug;30(6):1711-17. doi: 10.1007/s10103-015-1771-0
  10. Schornagel IL, Witvliet M, Engel AF. Five-year results of fissurectomy for chronic anal fissure: low recurrence rate and minimal effect on continence. Colorectal Dis. 2012 Aug;14(8):997-1000. doi: 10.1111/j.1463-1318.2011.02840.x
Address for correspondence:
29000, Ukraine, Khmelnitsky,
Pilotskaya Str., 1 N.I. Pirogov Vinnitsa National Medical University, the Surgery
Department of the Postgraduate Training Faculty,
Khmelnitsky Regional Hospital
tel. mobile +38 097-235-96-85.
e-mail: v.balytskyy@ukr.net
Balytskyy Vitaly V.
Information about the authors:
Balytskyy Vitaly V., PhD, Associate Professor of the Surgery Department of the Postgraduate Training Faculty, N.I. Pirogov Vinnitsa National Medical University, Khmelnitsky regional hospital, Khmelnitsky, Ukraine.
http://orcid.org/0000-0003-1076-5237
Zakharash Mikhail P., MD, Corresponding member of NAMS of Ukraine, Professor of the Surgery Department No1, A.A. Bogomolets National Medical University, Kiev, Ukraine.
http://orcid.org/0000-0003-4005-5172
Kuryk Elena G., MD, Professor of the Department of Pathologic Anatomy No1, A.A. Bogomolets National Medical University, Kiev, Ukraine.
https://orcid.org/0000-0003-3093-4325
Zakharash Yury M., MD, Professor of the Surgery Department No1, A.A. Bogomolets National Medical University, Kiev, Ukraine.
https://orcid.org/0000-0003-3093-4325
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.445   |  

N.I. KHRAMTSOVA, S.A. PLAKSIN, A.YU. SOTSKOV, D.N. PONOMAREV

CHARACTERISTIC OF VIABILITY OF LIPORAFT CELLS AT VARIOUS TECHNIQUES OF ITS SELECTION AND PROCESSING

Perm State Medical University named after Academician E.A. Vagner, Perm.
The Russian Federation

Objective. To determine the predictors of adipocytes and fibroblast-like cells survival in the lithographt using various techniques of lipoaspiration and adipose tissue preparation to autotraslantation.
Methods. Cellular viability was analyzed in 57 adipose tissue samples prepared by various techniques of lipoaspiration, and analysis of damage to adipocytes and fibroblast-like cells in 73 smears after passing of adipose tissue through filters of different diameters.
Results. The average adipocyte viability in untreated lipoaspirate was 59%. Using water-jet technique, it was 65% (median 61%), syringe technique 65% (median 74%), suction-assisted lipectomy 55% (median 44%), p=0.18. The number of viable adipocytes depending on donor sites: thighs 76%, waist 67%, abdomen 57%, buttocks 50%, shoulders 38%, knees 35%. The number of intact adipocytes after 1.4 mm filter processing was 62-68%, fibroblast-like cells 24-28%. The number of viable cells reduced with each passage. The number of intact adipocytes after 1.2 mm filter was 42-52%; of non-damaged fibroblast-like cells were 24-26% which located among connective tissue. The number of intact cells after emulsifying filter elevated up to 4-16% of adipocytes and 6-16% of fibroblast-like cells with a reduction of viable cells number with increasing of each passage. Single connective tissue fibers were determined, most content of the smear was represented by homogeneous fat.
Conclusion. The viability of adipocytes is higher when using the syringe lipoaspiration technique with sampling from the inner and outer surfaces of the thighs and lower back. For regenerative purposes, it is preferable to use emulsified fat, characterized by the destruction of adipocytes and the elimination of connective tissue fibers, keeping intact up to 16% of fibroblast-like cells. The defects of soft tissue is better to fill with washed macro-fat without filtration, or use a 1.4 mm cell filter. For a combination of regenerative and volumizing purposes, it is advisable to use anaerobic cell filters.

Keywords: adipocytes, regenerative medicine, adipose tissue mesenchymal stem cells, fat grafting, nanofat, lipectomy
p. 445-453 of the original issue
References
  1. Coleman SR, Lam S, Cohen SR, Bohluli B, Nahai F. Fat Grafting: Challenges and Debates. Atlas Oral Maxillofac Surg Clin North Am. 2018 Mar;26(1):81-84. doi: 10.1016/j.cxom.2017.10.006
  2. Bellini, Grieco MP, Raposio E. The science behind autologous fat grafting. Ann Med Surg (Lond). 2017 Nov 10;24:65-73. doi: 10.1016/j.amsu.2017.11.001. eCollection 2017 Dec.
  3. Shridharani SM, Broyles JM, Matarasso A. Liposuction devices: technology update. Med Devices (Auckl). 2014 Jul 21;7:241-51. doi: 10.2147/MDER.S47322. eCollection 2014.
  4. Sasaki GH. Water-assisted liposuction for body contouring and lipoharvesting: safety and efficacy in 41 consecutive patients. Aesthet Surg J. 2011 Jan;31(1):76-88. doi: 10.1177/1090820X10391465
  5. Fontes T, Brandão I, Negrão R, Martins MJ, Monteiro R. Autologous fat grafting: Harvesting techniques. Ann Med Surg (Lond). 2018 Nov 13;36:212-18. doi: 10.1016/j.amsu.2018.11.005. eCollection 2018 Dec.
  6. Leong DT, Hutmacher DW, Chew FT, Lim TC. Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. J Dermatol Sci. 2005 Mar;37(3):169-76. doi: 10.1016/j.jdermsci.2004.11.009
  7. Kakagia D, Pallua N. Autologous fat grafting: in search of the optimal technique. Surg Innov. 2014 Jun;21(3):327-36. doi: 10.1177/1553350613518846
  8. Ozsoy Z, Kul Z, Bilir A. The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet Surg J. 2006 May-Jun;26(3):287-89. doi: 10.1016/j.asj.2006.04.003
  9. Hamza A, Lohsiriwat V, Rietjens M. Lipofilling in breast cancer surgery. Gland Surg. 2013 Feb;2(1):7-14. doi: 10.3978/j.issn.2227-684X.2013.02.03
  10. Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013 Oct;132(4):1017-26. doi: 10.1097/PRS.0b013e31829fe1b0
  11. Osinga R, Menzi NR, Tchang LA, Caviezel D, Kalbermatten DF, Martin I, Schaefer DJ, Scherberich A, Largo RD. Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting. Plast Reconstr Surg. 2015 Jun;135(6):1618-28. doi: 10.1097/PRS.0000000000001288
  12. Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P. Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable. Acta Haematol. 2016;136(2):85-97. doi: 10.1159/000445096
  13. Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg. 2012 May;129(5):1081-92. doi: 10.1097/PRS.0b013e31824a2b19
  14. Crawford JL, Hubbard BA, Colbert SH, Puckett CL. Fine tuning lipoaspirate viability for fat grafting. Plast Reconstr Surg. 2010 Oct;126(4):1342-48. doi: 10.1097/PRS.0b013e3181ea44a9
  15. Vasilyev V, Vasilyev S, Vazhenin A, Teryushkova Z, Vasilyev Y, Vasilyev I, Semyonova A, Dimov G, Lomakin E. Abstract: An Algorithm for Treatment of Radiation-Induced Soft Tissue Damage with Products Based on Autologous Adipose Tissue. Plast Reconstr Surg Glob Open. 2018 Sep;6(9 Suppl):155-56. doi: 10.1097/01.GOX.0000547029.33601.d4
  16. Yu Q, Cai Y, Huang H, Wang Z, Xu P, Wang X, Zhang L, Zhang W, Li W. Co-Transplantation of Nanofat Enhances Neovascularization and Fat Graft Survival in Nude Mice. Aesthet Surg J. 2018 May 15;38(6):667-75. doi: 10.1093/asj/sjx211
  17. Pallua N, Grasys J, Kim BS. Enhancement of progenitor cells by two-step centrifugation of emulsified lipoaspirates. Plast Reconstr Surg.2018 Jul;142(1):99-109. doi: 10.1097/PRS
Address for correspondence:
614000, Russian Federation,
Perm, Petropavlovskaya Str., 26,
Perm State Medical University Named After Academician E.A. Vagner,
the Deans Office of the Medical Faculty
tel.mobile: +7 909 107-12-34,
e-mail: renelve@gmail.com,
Khramtsova Natalya I.
Information about the authors:
Khramtsova Natalya I., PhD, Associate Professor of the Hospital Surgery Department, Perm State Medical University Named After Academician E.A. Vagner, Perm, Russian Federation.
http://orcid.org/0000-0001-6097-6855
Plaksin Sergey A., MD, Professor of the Surgery Department with the Course of Cardiovascular Surgery and Invasive Cardiology, Perm State Medical University Named After Academician E.A. Vagner, Perm, Russian Federation.
http://orcid.org/0000-0001-8108-1655
Sotskov Artem Yu., Student, Perm State Medical University Named After Academician E.A. Vagner, Perm, Russian Federation.
https://orcid.org/0000-0003-0225-2925
Ponomarev Danil N., Student, Perm State Medical University Named After Academician E.A. Vagner, Perm, Russian Federation.
https://orcid.org/0000-0001-5324-7515

TRAUMATOLOGY AND ORTHOPEDICS

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.454   |  

T.A. STUPINA, T.N. VARSEGOVA

PATHOMORPHOLOGIC CHARACTERISTICS OF PALMAR APONEUROSIS IN PATIENTS WITH DUPUYTRENS CONTRACTURE AND VIRAL HEPATITIS

G.A.Ilizarov National Medical Research Centre
for Traumatology and Orthopedics of the Ministry of Health of Russia, Kurgan,
The Russian Federation

Objective. To establish pathomorphologic peculiarities of palmar aponeurosis in the patients with Dupuytrens contracture and concomitant virus hepatitis B and C.
Methods. The data analysis of histomorphometric studies of the operation samples of 122 patients with Dupuytrens contracture (Control group, n=100) and Dupuytrens contracture with virus hepatitis B and C (Hepatitis group, n=22) were analyzed.
Results. In patients of the Hepatitis group, the content of adiposed tissue in the palmar aponeurosis was 40.9% less (p <0.01) than in the Control group, and the content of dense connective tissue was 18.9% higher (p <0, 05). In all patients, arteries with the diameter up to 150 m prevailed in the palmar aponeurosis, but in the Hepatitis group their percentage was reduced by 20%, with higher proportions of vessels with the diameter of 150450 m and the absence or recalibration of the largest arteries. In the Control group, the arteries had diameters from 50 to 660 m, in the Hepatitis group they did not exceed 370 m. Vessels less than 300 m in diameter in both groups had comparable values of the Kernogans index. Arteries with a diameter of more than 300 microns in the Hepatitis group had higher values of the Kernogans index, which indicated a low conductance capacity compared to the vessels in the Control group. Most of the nerve trunks of the palmar aponeurosis in the patients of Hepatitis group showed signs of necrobiotic changes, i.e. fibrotic or swollen perineurium, with inflammatory cell infiltration, sometimes lost lamellar structure, and nerve fibers with signs of Wallerian degeneration.
Conclusion. Obtained histomorphometric data of the tissue composition of palmar fascial fibromatosis, less amount of adiposed tissue and higher amount of dense connective one and more pronounced disorder of hemodynamics and innervation of the palmar aponeurosis in the group with concomitant virus hepatitis indicate significant effect of the liver pathology on the progression of the disease.

Keywords: Dupuytrens contracture, viral hepatitis, palmar aponeurosis, tissue composition, arteries, nerve fibers, pathomorphology
p. 454-461 of the original issue
References
  1. Grazina R, Teixeira S, Ramos R, Sousa H, Ferreira A, Lemos R. Dupuytrens disease: where do we stand? EFORT Open Rev. 2019 Feb 20;4(2):63-69. doi: 10.1302/2058-5241.4.180021. eCollection 2019 Feb.
  2. Mathew S, Faheem M, Ibrahim SM, Iqbal W, Rauff B, Fatima K, Qadri I. Hepatitis C virus and neurological damage. World J Hepatol. 2016 Apr 28;8(12):545-56. doi: 10.4254/wjh.v8.i12.545
  3. Kleefeld F, Arendt G, Neuen-Jacob E, Maschke M, Husstedt I, Obermann M, Schmidt H, Hahn K; Deutsche Gesellschaft für Neuro-AIDS und Neuro-Infektiologie (DGNANI). Neurological complications of hepatitis C infections. Nervenarzt. 2020 Oct 1. doi: 10.1007/s00115-020-00999-6. Online ahead of print.
  4. Kleiner DE. The liver biopsy in chronic hepatitis C: a view from the other side of the microscope. Semin Liver Dis. 2005 Feb;25(1):52-64. doi: 10.1055/s-2005-864781
  5. Broekstra DC, Groen H, Molenkamp S, Werker PMN, van den Heuvel ER. A systematic review and meta-analysis on the strength and consistency of the associations between dupuytren disease and diabetes mellitus, liver disease, and epilepsy. Plast Reconstr Surg. 2018 Mar;141(3):367e-79e. doi: 10.1097/PRS.0000000000004120
  6. , , , , , , . ( ). . 2019;25(4):576-79. doi: 10.18019/1028-4427-2019-25-4-576-579
  7. Lam WL, Rawlins JM, Karoo RO, Naylor I, Sharpe DT. Re-visiting Lucks classification: a histological analysis of Dupuytrens disease. J Hand Surg Eur Vol. 2010 May;35(4):312-7. doi: 10.1177/1753193410362848
  8. Musumeci M, Vadalà G, Russo F, Pelacchi F, Lanotte A, Denaro V. Dupuytrens disease therapy: targeting the vicious cycle of myofibroblasts? Expert Opin Ther Targets. 2015;19(12):1677-87. doi: 10.1517/14728222.2015.1068758
  9. Wade R, Igali L, Figus A. Skin involvement in Dupuytrens disease. J Hand Surg Eur Vol. 2016 Jul;41(6):600-8. doi: 10.1177/1753193415601353
  10. van Beuge MM, ten Dam E-JPM, Werker PMN, Bank RA. Matrix and cell phenotype differences in Dupuytrens disease. Fibrogenesis Tissue Repair. 2016;Jun29;9:9. doi: 10.1186/s13069-016-0046-0
  11. Satish L, Gallo PH, Baratz ME, Johnson S, Kathju S. Reversal of TGF-β1 stimulation of α-smooth muscle actin and extracellular matrix components by cyclic AMP in Dupuytrens-derived fibroblasts. BMC Musculoskelet Disord. 2011;12:113. doi: 10.1186/1471-2474-12-113
  12. Jakubzick C, Kunkel SL, Puri RK, Hogaboam CM. Therapeutic targeting of IL-4-and IL-13-responsive cells in pulmonary fibrosis. Immunol Res. 2004;30(3):339-49. doi: 10.1385/IR:30:3:339
  13. Dolganova TI, Shchudlo NA, Shabalin DA, Kostin VV. Assessment ofhemodynamics of the hand arteries and skin micro circulation in Dupuytrens contracture stages 3to4 of before and after surgical treatment with the use ofllizarov transosseous fixation. Geniii Ortopedii. 2019;25(1):86-92. doi: 10.18019/1028-4427-2019-25-1-86-92 (In Russ)
  14. Gerosa T, Pierrart J, Serane-Fresnel J, Amsallem L, Masmejean EH. Distal sensory disorders in Dupuytrens disease. Orthop Traumatol Surg Res. 2018 Oct;104(6):897-900. doi: 10.1016/j.otsr.2018.06.004
  15. Stecco C, Macchi V, Barbieri A, Tiengo C, Porzionato A, De Caro R. Hand fasciae innervation: The palmar aponeurosis. Clin Anat. 2018 Jul;31(5):677-83. doi: 10.1002/ca.23076
Address for correspondence:
640014, Russian Federation,
Kurgan, M.Ulyanova Str., 6,
G.A. Ilizarov National Medical Research
Centre for Traumatology and Orthopedics
of the Ministry of Health of Russia,
tel. +7 905 850-67-89,
e-mail: StupinaSTA@mail.ru,
Stupina Tatyana A.
Information about the authors:
Stupina Tatyana A., MD(Biol.), Leading Researcher of the Morphology Laboratory, G.A.Ilizarov National Medical Research Centre for Traumatology and Orthopedics of the Ministry of Health of Russia, Kurgan, Russian Federation.
https://orcid.org/0000-0003-3434-0372.
Varsegova Tatyana N., PhD(Biol.), Senior Researcher of the Morphology Laboratory, G.A.Ilizarov National Medical Research Centre for Traumatology and Orthopedics of the Ministry of Health of Russia, Kurgan, Russian Federation.
https://orcid.org/0000-0001-5430-2045

ANESTHESIOLOGY-REANIMATOLOGY

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.462   |  

.V. MAROCHKOV 1, 2, A.L. LIPNITSKI 1, 2, I.A. KUPREYEVA 1, V.U. DAZORTSAVA 1

COAGULATION BALANCE AND PLATELET AGGREGATION INDICATORS IN PATIENTS WITH INFECTION COVID-19

Mogilev Regional Clinical Hospital 1, Mogilev,
Vitebsk State Order of Peoples Friendship Medical University 2, Vitebsk,
The Republic of Belarus

Objective. To determine changes in coagulation balance and platelet aggregation in patient during the treatment of COVID-19 infection.
Methods. A pilot non-randomized prospective clinical study of coagulation balance and platelet aggregation in patients admitted to the intensive care unit with acute respiratory distress syndrome and the diagnosis of COVID-19 (n=50) was performed. Out of 50 patients, 19 patients died, 31 patients were transferred to the therapeutic department. The study of indicators of coagulation balance and platelet aggregation was carried out once in 1-3 days starting from the patients admission to the hospital using coagulation analyzer ACL 10000 (Instrumentation Laboratory, USA) and platelet aggregation analyzer AP 2110 (ZAO SOLAR, Republic of Belarus).
Results. In 45 (90%) patients with COVID-19, there is a significant increase of von Willebrand factor activity 350 (244.5; 480) %. There were no statistically significant differences in the level of von Willebrand factor activity among the deceased and surviving patients: 450.0 (338.8; 530.5) % in deceased patients and 342.0 (188.8; 480.0) % in survivors. At von Willebrand factor activity level of up to 250%, the mortality rate was 8.3%, at a level of 250-400% 31.3%, at a level of more than 400% 59.1%. Significantly above the normal range in most patients were fibrinogen (above normal in 68% of patients, 4.63 (3.49; 5.87) g/L) and D-dimers (above normal in 88% of patients, 0.73 (0,31; 1.4) μg/ml). Antithrombin III was below normal in 56% of patients (82 (67.1; 97.2) %). The degree of platelet aggregation has a strong direct correlation with the von Willebrand factor level: with an ADP inducer 0.3 μg/ml (R=0.71, =0.003); ADP 0.6 μg/ml (R=0.74, =0.0001); ADP 1.25 μg/ml (R=0.53, =0.01).
Conclusion. Analysis and evaluation of coagulation balance and platelet aggregation should be an integral part in the treatment of patients with COVID-19 infection.

Keywords: COVID-19, , , D-, ,
p. 462-469 of the original issue
References
  1. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, Pesenti A, Peyvandi F, Tripodi A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020 Jul;18(7):1738-42. doi: 10.1111/jth.14850
  2. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020 Jun;190:62. doi: 10.1016/j.thromres.2020.04.014
  3. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, Galli M, Catena E, Tosoni A, Gianatti A, Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from northern Italy [Internet]. Published online 2020 Apr 22. doi: 10.1101/2020.04.19.20054262
  4. Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020 Jun 18;24(1):360. doi: 10.1186/s13054-020-03077-0
  5. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19). Treatment Guidelines [Electronic resource]. National Institutes of Health; 2020. Available from: https://www.covid19treatmen tguidelines.nih.gov/
  6. Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020 Jun 18;24(1):360. doi: 10.1186/s13054-020-03077-0
  7. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020 Sep;18(9):2103-09. doi: 10.1111/jth.14975
  8. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020 Jun;18(6):1324-29. doi: 10.1111/jth.14859
  9. Koupenova M. Potential role of platelets in COVID-19: Implications for thrombosis. Res Pract Thromb Haemost. 2020 Jun 21;4(5):737-40. doi: 10.1002/rth2.12397. eCollection 2020 Jul.
  10. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, Shang Y. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost. 2020 Jun;18(6):1469-72. doi: 10.1111/jth.14848
  11. Zubovskaia ET, Iurkevich TIu, Mitroshenko IV, Demidova RN. Trombotsitarnaia agregatometriia v klinicheskoi praktike: posobie dlia vrachei. Minsk, RB: ProniaPlius; 2018. 67 p. (In Russ.)
  12. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020 Jun 9;323(22):2329-30. doi: 10.1001/jama.2020.6825
  13. Pitchford S, Pan D, Welch HC. Platelets in neutrophil recruitment to sites of inflammation. Curr Opin Hematol. 2017 Jan;24(1):23-31. doi: 10.1097/MOH.0000000000000297
  14. Ware LB, Conner ER, Matthay MA. von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit Care Med. 2001 Dec;29(12):2325-31. doi: 10.1097/00003246-200112000-00016
Address for correspondence:
212016, Republic of Belarus,
Mogilev, Belynitskii-Biruli Str., 12,
Mogilev Regional Clinical Hospital,
the Department for Coordination of Organ
and Tissue Collection for Transplantation,
tel.: +375 222 62-75-95,
e-mail: Lipnitski.al@gmail.com,
Lipnitski Artur L.
Information about the authors:
Marochkov Alexey V., MD, Professor, Anesthesiologist of Anesthesiology and Intensive Care Unit, Mogilev Regional Clinical Hospital, the Branch of the Departments of Anesthesiology and Resuscitation with a Course of the Faculty of the Advanced Training and Retraining and Surgery of the Faculty of the Advanced Training and Retraining of Vitebsk State Medical University, Mogilev, Republic of Belarus.
https://orcid.org/0000-0001-5092-8315
Lipnitski A.L., PhD, Anesthesiologist, Head of the Department Coordination for Organ and Tissue Transplantation .Mogilev Regional Clinical Hospital, the Branch of the Departments of Anesthesiology and Resuscitation with a Course of the Faculty of the Advanced Training and Retraining and Surgery of the Faculty of the Advanced Training and Retraining of Vitebsk State Medical University, Mogilev, Republic of Belarus.
https://orcid.org/0000-0002-2556-4801
Kupreyeva Irina A., Head of the Centralized Laboratory of Clinical Biochemistry, Mogilev Regional Clinical Hospital, Mogilev, Republic Of Belarus.
https://orcid.org/0000-0002-5745-1203
Dazortsava Olga V., Physician of Laboratory Diagnostics of the Centralized Laboratory of Clinical Biochemistry, Mogilev Regional Clinical Hospital, Mogilev, Republic of Belarus.
https://orcid.org/0000-0001-9258-4514

REVIEWS

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.470   |  

O. L. EISMONT

ADHESIVE CAPSULITIS OF THE SHOULDER JOINT

The Republican Scientific and Practical Centre for Traumatology and Orthopedics, Minsk,
The Republic of Belarus

The article presents a current view of the etiology and pathogenesis of adhesive capsulitis of the shoulder joint and the basic principles of conservative and surgical treatmen. Idiopathic adhesive shoulder capsulitis is a self-limiting disease with gradual improvement in symptoms, sometimes demanding surgical treatment. Currently, the role of both inflammatory and fibrotizing processes in the pathogenesis of adhesive capsulitis is generally recognized, when the inflammatory process ultimately leads to fibrotic changes. The disease is associated with diabetes mellitus, thyroid disease, cerebrovascular disease, coronary heart disease, autoimmune diseases, and Dupuytrens contracture. In the literature there is no consensus on the unified treatment modality for adhesive capsulitis: conservative, operative, or combined. In a number of patients, improvement is achieved spontaneously, the recommended methods of treatment range from follow-up to invasive open capsulotomy. There is no universal treatment algorithm, so treatment should be individualized. By all accounts, conservative treatment is the first treatment of choice for adhesive capsulitis and includes physical therapy in combination with physiotherapy, anti-inflammatory drugs, corticosteroid injection, and hydrodilation. Surgical treatment of adhesive capsulitis is indicated for patients with persistent symptoms of the disease and ineffectiveness of conservative treatment. Surgical treatment includes manipulation under anesthesia and / or shoulder capsulotomy (arthroscopic or open). Treatment of adhesive shoulder capsulitis remains an unresolved clinical problem. The existing treatment regimens are not universal and further studies with long-term outcomes are needed to develop more effective treatment modality.

Keywords: adhesive shoulder capsulitis, shoulder joint, arthrofibrosis, humeroscapular periarthritis, capsulotomy
p. 470-479 of the original issue
References
  1. Neviaser AS, Neviaser RJ. Adhesive capsulitis of the shoulder. J Am Acad Orthop Surg. 2011 Sep;19(9):536-42. doi: 10.5435/00124635-201109000-00004
  2. DOrsi GM, Via AG, Frizziero A, Oliva F. Treatment of adhesive capsulitis: a review. Muscles Ligaments Tendons J. 2012 Sep 10;2(2):70-78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666515/
  3. Khazzam M. Uncovering the Mystery of Idiopathic Adhesive Capsulitis Commentary on an article by Hyung Bin Park, MD, PhD, et al.: Association Between High-Sensitivity C-Reactive Protein and Idiopathic Adhesive Capsulitis. J Bone Joint Surg. 2020;102(9):e40. doi: 10.2106/JBJS.20.00170
  4. Neviaser JS. Adhesive capsulitis of the shoulder: a study of the pathological findings in periarthritis of the shoulder. J Bone Joint Surg. 1945;27(2):211-22.
  5. Bailie DS, Llinas PJ, Ellenbecker TS. Cementless humeral resurfacing arthroplasty in active patients less than fifty-five years of age. J Bone Joint Surg Am. 2008 Jan;90(1):110-17. doi: 10.2106/JBJS.F.01552
  6. Jump CM, Duke K, Malik RA, Charalambous CP. Frozen Shoulder: A Systematic Review of Cellular, Molecular, and Metabolic Findings. JBJS Rev. 2021 Jan 26;9(1):e19.00153. doi: 10.2106/JBJS.RVW.19.00153
  7. Tucker A, Hiscox C, Bicknel RT. A randomized controlled trial comparing arthrographic joint injection with and without steroids for the treatment of adhesive capsulitis. J Shoulder Elbow Surg. 2017;26(5):e148e49. doi: 10.1016/j.jse.2016.12.009
  8. Park HB, Gwark JY, Jung J, Jeong ST. Association Between High-Sensitivity C-Reactive Protein and Idiopathic Adhesive Capsulitis. J Bone Joint Surg Am. 2020 May 6;102(9):761-68. doi: 10.2106/JBJS.19.00759
  9. Park HB, Gwark JY, Jung J. What Serum Lipid Abnormalities Are Associated with Adhesive Capsulitis Accompanied by Diabetes? Clin Orthop Relat Res. 2018 Nov;476(11):2231-37. doi: 10.1097/CORR.0000000000000443
  10. Yip M, Francis AM, Roberts T, Rokito A, Zuckerman JD, Virk MS. Treatment of Adhesive Capsulitis of the Shoulder: A Critical Analysis Review. JBJS Rev. 2018 Jun;6(6):e5. doi: 10.2106/JBJS.RVW.17.00165
  11. Dang V, Beardsley E. Nonclassic etiologies of Shoulder impingement syndrome. J Bone Joint Surg. 2020;8(2):e0037. doi: 10.2106/JBJS.JOPA.19.00037
  12. Barreto RPG, Braman JP, Ludewig PM, Ribeiro LP, Camargo PR. Bilateral magnetic resonance imaging findings in individuals with unilateral shoulder pain. J Shoulder Elbow Surg. 2019 Sep;28(9):1699-06. doi: 10.1016/j.jse.2019.04.001
  13. Sasanuma H, Sugimoto H, Fujita A, Kanaya Y, Iijima Y, Saito T, Takeshita K. Characteristics of dynamic magnetic resonance imaging of idiopathic severe frozen shoulder. J Shoulder Elbow Surg. 2017 Feb;26(2):e52-e57. doi: 10.1016/j.jse.2016.06.003
  14. Kim K, Hwang HJ, Kim SG, Lee JH, Jeong WK. Can Shoulder Muscle Activity Be Evaluated With Ultrasound Shear Wave Elastography? Clin Orthop Relat Res. 2018 Jun;476(6):1276-83. doi: 10.1097/01.blo.0000533628.06091.0a
  15. Sheridan MA, Hannafin JA. Upper extremity: emphasis on frozen shoulder. Orthop Clin North Am. 2006 Oct;37(4):531-39. doi: 10.1016/j.ocl.2006.09.009
  16. Griggs SM, Ahn A, Green A. Idiopathic adhesive capsulitis. A prospective functional outcome study of nonoperative treatment. J Bone Joint Surg Am. 2000 Oct;82(10):1398-407. doi: 10.2106/00004623-200010000-00005
  17. Prodromidis AD, Charalambous CP. Is there a genetic predisposition to frozen shoulder? A systematic review and meta-analysis. JBJS Rev. 2016 Feb 23;4(2):01874474-201602000-00004. doi: 10.2106/JBJS.RVW.O.00007
  18. Harris JD, Griesser MJ, Copelan A, Jones GL. Treatment of adhesive capsulitis with intra-articular hyaluronate: A systematic review. Int J Shoulder Surg. 2011 Apr;5(2):31-37. doi: 10.4103/0973-6042.83194
  19. Arkkila PE, Kantola IM, Viikari JS, Rönnemaa T. Shoulder capsulitis in type I and II diabetic patients: association with diabetic complications and related diseases. Ann Rheum Dis. 1996 Dec;55(12):907-14. doi: 10.1136/ard.55.12.907
  20. Huang SW, Lin JW, Wang WT, Wu CW, Liou TH, Lin HW. Hyperthyroidism is a risk factor for developing adhesive capsulitis of the shoulder: a nationwide longitudinal population-based study. Sci Rep. 2014 Feb 25;4:4183. doi: 10.1038/srep04183
  21. Bruckner FE, Nye CJ. A prospective study of adhesive capsulitis of the shoulder (frozen shoulder) in a high risk population. Q J Med. 1981 Spring;50(198):191-204. doi: 10.1093/oxfordjournals.qjmed.a067680
  22. Neviaser RJ, Neviaser TJ. The frozen shoulder. Diagnosis and management. Clin Orthop Relat Res. 1987 Oct;(223):59-64. doi: 10.1097/00003086-198710000-00008
  23. Bunker TD, Anthony PP. The pathology of frozen shoulder. A Dupuytren-like disease. J Bone Joint Surg Br. 1995 Sep;77(5):677-83. doi: 10.1302/0301-620x.77b5.7559688
  24. Lubis AM, Lubis VK. Matrix metalloproteinase, tissue inhibitor of metalloproteinase and transforming growth factor-beta 1 in frozen shoulder, and their changes as response to intensive stretching and supervised neglect exercise. J Orthop Sci. 2013 Jul;18(4):519-27. doi: 10.1007/s00776-013-0387-0
  25. Ibrahim IO, Nazarian A, Rodriguez EK. Clinical management of arthrofibrosis: state of the art and therapeutic outlook. JBJS Rev. 2020 Jul;8(7):e1900223. doi: 10.2106/JBJS.RVW.19.00223
  26. Park HB, Gwark JY, Jung J. What Serum Lipid Abnormalities Are Associated with Adhesive Capsulitis Accompanied by Diabetes? Clin Orthop Relat Res. 2018 Nov;476(11):2231-37. doi: 10.1097/CORR.0000000000000443
  27. Kim YS, Kim JM, Lee YG, Hong OK, Kwon HS, Ji JH. Intercellular adhesion molecule-1 (ICAM-1, CD54) is increased in adhesive capsulitis. J Bone Joint Surg Am. 2013 Feb 20;95(4):e181-88. doi: 10.2106/JBJS.K.00525
  28. Russell S, Jariwala A, Conlon R, Selfe J, Richards J, Walton M. A blinded, randomized, controlled trial assessing conservative management strategies for frozen shoulder. J Shoulder Elbow Surg. 2014 Apr;23(4):500-7. doi: 10.1016/j.jse.2013.12.026
  29. Diercks RL, Stevens M. Gentle thawing of the frozen shoulder: a prospective study of supervised neglect versus intensive physical therapy in seventy-seven patients with frozen shoulder syndrome followed up for two years. J Shoulder Elbow Surg. 2004 Sep-Oct;13(5):499-502. doi: 10.1016/j.jse.2004.03.002
  30. Vermeulen HM, Rozing PM, Obermann WR, le Cessie S, Vliet Vlieland TP. Comparison of high-grade and low-grade mobilization techniques in the management of adhesive capsulitis of the shoulder: randomized controlled trial. Phys Ther. 2006 Mar;86(3):355-68. doi: 10.1093/PTJ/86.3.355
  31. Tanaka K, Saura R, Takahashi N, Hiura Y, Hashimoto R. Joint mobilization versus self-exercises for limited glenohumeral joint mobility: randomized controlled study of management of rehabilitation. Clin Rheumatol. 2010 Dec;29(12):1439-44. doi: 10.1007/s10067-010-1525-0
  32. Mohamadi A, Chan JJ, Claessen FM, Ring D, Chen NC. Corticosteroid Injections Give Small and Transient Pain Relief in Rotator Cuff Tendinosis: A Meta-analysis. Clin Orthop Relat Res. 2017 Jan;475(1):232-43. doi: 10.1007/s11999-016-5002-1
  33. Buchbinder R, Hoving JL, Green S, Hall S, Forbes A, Nash P. Short course prednisolone for adhesive capsulitis (frozen shoulder or stiff painful shoulder): a randomised, double blind, placebo controlled trial. Ann Rheum Dis. 2004 Nov;63(11):1460-69. doi: 10.1136/ard.2003.018218
  34. Lorbach O, Anagnostakos K, Scherf C, Seil R, Kohn D, Pape D. Nonoperative management of adhesive capsulitis of the shoulder: oral cortisone application versus intra-articular cortisone injections. J Shoulder Elbow Surg. 2010 Mar;19(2):172-79. doi: 10.1016/j.jse.2009.06.013
  35. Hettrich CM, DiCarlo EF, Faryniarz D, Vadasdi KB, Williams R, Hannafin JA. The effect of myofibroblasts and corticosteroid injections in adhesive capsulitis. J Shoulder Elbow Surg. 2016 Aug;25(8):1274-79. doi: 10.1016/j.jse.2016.01.012
  36. Bulgen DY, Binder AI, Hazleman BL, Dutton J, Roberts S. Frozen shoulder: prospective clinical study with an evaluation of three treatment regimens. Ann Rheum Dis. 1984 Jun;43(3):353-60. doi: 10.1136/ard.43.3.353
  37. Iwata H. Pharmacologic and clinical aspects of intraarticular injection of hyaluronate. Clin Orthop Relat Res. 1993 Apr;(289):285-91. doi: 10.1097/00003086-199304000-00042
  38. Tamai K, Mashitori H, Ohno W, Hamada J, Sakai H, Saotome K. Synovial response to intraarticular injections of hyaluronate in frozen shoulder: a quantitative assessment with dynamic magnetic resonance imaging. J Orthop Sci. 2004;9(3):230-34. doi: 10.1007/s00776-004-0766-7
  39. Rovetta G, Monteforte P. Intraarticular injection of sodium hyaluronate plus steroid versus steroid in adhesive capsulitis of the shoulder. Int J Tissue React. 1998;20(4):125-30.
  40. Ozkan K, Ozcekic AN, Sarar S, Cift H, Ozkan FU, Unay K. Suprascapular nerve block for the treatment of frozen shoulder. Saudi J Anaesth. 2012 Jan;6(1):52-55. doi: 10.4103/1658-354X.93061
  41. Karataş GK, Meray J. Suprascapular nerve block for pain relief in adhesive capsulitis: comparison of 2 different techniques. Arch Phys Med Rehabil. 2002 May;83(5):593-97. doi: 10.1053/apmr.2002.32472
  42. Gallacher S, Beazley JC, Evans J, Anaspure R, Silver D, Redfern A, Thomas W, Kitson J, Smith C. A randomized controlled trial of arthroscopic capsular release versus hydrodilatation in the treatment of primary frozen shoulder. J Shoulder Elbow Surg. 2018 Aug;27(8):1401-06. doi: 10.1016/j.jse.2018.04.002
  43. Quraishi NA, Johnston P, Bayer J, Crowe M, Chakrabarti AJ. Thawing the frozen shoulder. A randomised trial comparing manipulation under anaesthesia with hydrodilatation. J Bone Joint Surg Br. 2007 Sep;89(9):1197-200. doi: 10.1302/0301-620X.89B9.18863
  44. Ma SY, Je HD, Jeong JH, Kim HY, Kim HD. Effects of whole-bodycryotherapy in the management of adhesive capsulitis of the shoulder. Arch Phys Med Rehabil. 2013 Jan;94(1):9-16. doi: 10.1016/j.apmr.2012.07.013
  45. Melzer C, Wallny T, Wirth CJ, Hoffmann S. Frozen shoulder--treatment and results. Arch Orthop Trauma Surg. 1995;114(2):87-91. doi: 10.1007/BF00422832
  46. Karas V, Riboh JC, Garrigues GE. Arthroscopic Management of the Stiff Shoulder. JBJS Rev. 2016 Apr 5;4(4):e21-27. doi: 10.2106/JBJS.RVW.O.00047
  47. Kim YS, Lee HJ. Essential Surgical Technique for Arthroscopic Capsular Release in the Treatment of Shoulder Stiffness. JBJS Essent Surg Tech. 2015 Jul 22;5(3):e14. doi: 10.2106/JBJS.ST.N.00102. eCollection 2015 Sep 23.
  48. Snow M, Boutros I, Funk L. Posterior arthroscopic capsular release in frozen shoulder. Arthroscopy. 2009 Jan;25(1):19-23. doi: 10.1016/j.arthro.2008.08.006
  49. Smith CD, Hamer P, Bunker TD. Arthroscopic capsular release for idiopathic frozen shoulder with intra-articular injection and a controlled manipulation. Ann R Coll Surg Engl. 2014 Jan;96(1):55-60. doi: 10.1308/003588414X13824511650452
  50. Mubark IM, Ragab AH, Nagi AA, Motawea BA. Evaluation of the results of management of frozen shoulder using the arthroscopic capsular release. Ortop Traumatol Rehabil. 2015 Jan-Feb;17(1):21-28. doi: 10.5604/15093492.1143530
  51. Barnes CP, Lam PH, Murrell GA. Short-term outcomes after arthroscopic capsular release for adhesive capsulitis. J Shoulder Elbow Surg. 2016 Sep;25(9):e256-64. doi: 10.1016/j.jse.2015.12.025
  52. Ibrahim IO, Nazarian A, Rodriguez EK. Clinical Management of Arthrofibrosis: State of the Art and Therapeutic Outlook. JBJS Rev. 2020 Jul;8(7):e1900223. doi: 10.2106/JBJS.RVW.19.00223
Address for correspondence:
220024, Republic of Belarus,
Minsk, Leytenant Kizhevatov Str., 60-4,
the Republican Scientific and Practical
Centre for Traumatology and Orthopedics,
tel. mobile+375 29 6787904,
e-mail: oleismont@tut.by,
Eismont Oleg L.
Information about the authors:
Eismont Oleg L., MD, Associate Professor, Deputy Director for Research, the Republican Scientific and Practical Centre for Traumatology and Orthopedics, Minsk, the Republic of Belarus.
http://orcid.org/0000-0002-1002-4132
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.480   |  

R.I. DOVNAR

MODELING OF SKIN WOUNDS IN LABORATORY ANIMALS

Grodno State Medical University, Grodno,
The Republic of Belarus

The creation and implementation of new methods of study and local wound care occur in stages: in vitro, in vivo and clinical trials. The fundamental point of this process is to study the effect of the proposed agent on the experimental wound healing models of laboratory animals taking into consideration the common healing phases of course and similarity of animal wound healing with human one. At the initial stage the main problems faced by the researcher include the selection of the optimal experimental animal, while animal models are suitable for many skin disorders. The lack of strong evidence and relevant guidelines regarding the most appropriate form of local-wound care in literature and the fragmentation of the available information lead to the fact that during the development of the experiment, the scientists spend time, resources and operate on an additional number of animals. This article summarizes the literature data on the applied modeling methods as for the most common and rare types of skin wounds including burns and trophic ulcers in various laboratory animals. Those who prepared the experiment should have paid closer attention to the features of creating such wounds and nuances so as the proven techniques of their creation in various species are shown. Variants of the course and prospects for the development of this area of surgery are presented.

Keywords: animals, disease models, wound healing, skin injuries, burns, laboratory, ulcer
p. 480-489 of the original issue
References
  1. Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery. 2017;35(9):473-77. doi: 10.1016/j.mpsur.2017.06.004
  2. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014 Dec 3;6(265):265sr6. doi: 10.1126/scitranslmed.3009337
  3. Ansell DM, Holden KA, Hardman MJ. Animal models of wound repair: Are they cutting it? Exp Dermatol. 2012 Aug;21(8):581-85. doi: 10.1111/j.1600-0625.2012.01540.x
  4. Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014 Nov;7(11):1205-13. doi: 10.1242/dmm.016782
  5. Spear M. Acute or chronic? Whats the difference? Plast Surg Nurs. 2013 Apr-Jun;33(2):98-100. doi: 10.1097/PSN.0b013e3182965e94
  6. Davidson JM. Animal models for wound repair. Arch Dermatol Res. 1998 Jul;290(Suppl):S1-11. doi: 10.1007/PL00007448
  7. Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assesment of wound healing potential: a systematic review. Wound Medicine. 2018 Mar;20:43-53. doi: 10.1016/j.wndm.2018.01.003
  8. Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, OKane S, Ferguson M. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013 May-Jun;21(3):428-36. doi: 10.1111/wrr.12043
  9. Charoenkwan K, Iheozor-Ejiofor Z, Rerkasem K, Matovinovic E. Scalpel versus electrosurgery for major abdominal incisions. Cochrane Database Syst Rev. 2017 Jun 14;6(6):CD005987. doi: 10.1002/14651858.CD005987.pub3
  10. Yang Q, Phillips PL, Sampson EM, Progulske-Fox A, Jin S, Antonelli P, Schultz GS. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair Regen. 2013 Sep-Oct;21(5):704-14. doi: 10.1111/wrr.12074
  11. Chen L, Nagaraja S, Zhou J, Zhao Y, Fine D, Mitrophanov AY, Reifman J, DiPietro LA. Wound healing in Mac-1 deficient mice. Wound Repair Regen. 2017 May;25(3):366-76. doi: 10.1111/wrr.12531
  12. Ashcroft GS, Horan MA, Ferguson MW. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J Anat. 1997 Apr;190(Pt 3):351-65. doi: 10.1046/j.1469-7580.1997.19030351.x
  13. Routley CE, Ashcroft GS. Effect of estrogen and progesterone on macrophage activation during wound healing. Wound Repair Regen. 2009 Jan-Feb;17(1):42-50. doi: 10.1111/j.1524-475X.2008.00440.x
  14. Kiwanuka E, Hackl F, Philip J, Caterson EJ, Junker JP, Eriksson E. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg. 2011 Dec;213(6):728-35. doi: 10.1016/j.jamcollsurg.2011.08.020
  15. Jabeen S, Clough ECS, Thomlinson AM, Chadwick SL, Ferguson MWJ, Shah M. Partial thickness wound: Does mechanism of injury influence healing? Burns. 2019 May;45(3):531-42. doi: 10.1016/j.burns.2018.08.010
  16. Barillo DJ, Croutch CR, Barillo AR, Reid F, Singer A. Safety evaluation of silver-ion dressings in a porcine model of deep dermal wounds: A GLP study. Toxicol Lett. 2020 Feb 1;319:111-18. doi: 10.1016/j.toxlet.2019.10.023
  17. Vasilkov AYu, Dovnar RI, Smotryn SM, Iaskevich NN, Naumkin AV. Healing of experimental aseptic skin wound under the influence of the wound dressing, containing silver nanoparticles. Am J Nanotechnol Nanomed. 2018;1(2):69-77. https://www.scireslit.com/Nanotechnology/AJNN-ID19.pdf
  18. Davis SC, Mertz PM, Eaglstein WH. Second-degree burn healing: the effect of occlusive dressings and a cream. J Surg Res. 1990 Mar;48(3):245-48. doi: 10.1016/0022-4804(90)90220-v
  19. Boykin JV, Eriksson E, Pittman RN. In vivo microcirculation of a scald burn and the progression of postburn dermal ischemia. Plast Reconstr Surg. 1980 Aug;66(2):191-98. doi: 10.1097/00006534-198008000-00002
  20. Walker HL, Mason AD Jr. A standard animal burn. J Trauma. 1968 Nov;8(6):1049-51. doi: 10.1097/00005373-196811000-00006
  21. Nguyen PK, Smith AL, Reynolds KJ. A literature review of different pressure ulcer models from 19422005 and the development of an ideal animal model. Australas Phys Eng Sci Med. 2008 Sep;31(3):223-25. doi: 10.1007/bf03179348
  22. Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol. 2018 Oct;138(10):2095-2105.e1. doi: 10.1016/j.jid.2018.08.005
  23. Reid RR, Sull AC, Mogford JE, Roy N, Mustoe TA. A novel murine model of cyclical cutaneous ischemia-reperfusion injury. J Surg Res. 2004 Jan;116(1):172-80. doi: 10.1016/s0022-4804(03)00227-0
  24. Wassermann E, van Griensven M, Gstaltner K, Oehlinger W, Schrei K, Redl H. A chronic pressure ulcer model in the nude mouse. Wound Repair Regen. 2009 Jul-Aug;17(4):480-84. doi: 10.1111/j.1524-475X.2009.00502.x
  25. Sundin BM, Hussein MA, Glasofer S, El-Falaky MH, Abdel-Aleem SM, Sachse RE, Klitzman B. The role of allopurinol and deferoxamine in preventing pressure ulcers in pigs. Plast Reconstr Surg. 2000 Apr;105(4):1408-21. doi: 10.1097/00006534-200004040-00021
  26. Fang RC, Mustoe TA. Animal models of wound healing: utility in transgenic mice. J Biomater Sci Polym Ed. 2008;19(8):989-1005. doi: 10.1163/156856208784909327
  27. Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, Green J, Marsh CB, Gould LJ, Sen CK. Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics. 2009 May 13;37(3):211-24. doi: 10.1152/physiolgenomics.90362.2008
  28. Chen C, Schultz GS, Bloch M, Edwards PD, Tebes S, Mast BA. Molecular and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds. Wound Repair Regen. 1999 Nov-Dec;7(6):486-94. doi: 10.1046/j.1524-475x.1999.00486.x
  29. Canapp SO Jr, Farese JP, Schultz GS, Gowda S, Ishak AM, Swaim SF, Vangilder J, Lee-Ambrose L, Martin FG. The effect of topical tripeptide-copper complex on healing of ischemic open wounds. Vet Surg. 2003 Nov-Dec;32(6):515-23. doi: 10.1111/j.1532-950x.2003.00515.x
  30. Sisco M, Mustoe TA. Animal models of ischemic wound healing. Toward an approximation of human chronic cutaneous ulcers in rabbit and rat. Methods Mol Med. 2003;78:55-65. doi: 10.1385/1-59259-332-1:055
  31. Ahn ST, Mustoe TA. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg. 1990 Jan;24(1):17-23. doi: 10.1097/00000637-199001000-00004
  32. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012 Jun;166(3):877-94. doi: 10.1111/j.1476-5381.2012.01911.x
  33. Wagner JD, Cline JM, Shadoan MK, Bullock BC, Rankin SE, Cefalu WT. Naturally occurring and experimental diabetes in cynomolgus monkeys: a comparison of carbohydrate and lipid metabolism and islet pathology. Toxicol Pathol. 2001 Jan-Feb;29(1):142-48. doi: 10.1080/019262301301418955
  34. Velander P, Theopold C, Hirsch T, Bleiziffer O, Zuhaili B, Fossum M, Hoeller D, Gheerardyn R, Chen M, Visovatti S, Svensson H, Yao F, Eriksson E. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen. 2008 Mar-Apr;16(2):288-93. doi: 10.1111/j.1524-475X.2008.00367.x
  35. Fang RC, Kryger ZB, Buck DW, De la Garza M, Galiano RD, Mustoe TA. Limitations of the db/db mouse in translational wound healing research: is the NONcNZO10 polygenic mouse model superior? Wound Repair Regen. 2010 Nov-Dec;18(6):605-13. doi: 10.1111/j.1524-475X.2010.00634.x
  36. Takikawa M, Nakamura S, Nambu M, Sasaki K, Yanagibayashi S, Azuma R, Yamamoto N, Kiyosawa T. New model of radiation-induced skin ulcer in rats. J Plast Surg Hand Surg. 2011 Dec;45(6):258-62. doi: 10.3109/2000656X.2011.633401
  37. Fujita K, Nishimoto S, Fujiwara T, Sotsuka Y, Tonooka M, Kawai K, Kakibuchi M. A new rabbit model of impaired wound healing in an X-ray-irradiated field. PLoS One. 2017 Sep 8;12(9):e0184534. doi: 10.1371/journal.pone.0184534
  38. Bernatchez SF, Parks PJ, Grussing DM, Matalas SL, Nelson GS. Histological characterization of a delayed wound healing model in pig. Wound Repair Regen. 1998 May-Jun;6(3):223-33. doi: 10.1046/j.1524-475x.1998.60308.x
  39. Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127-38. doi: 10.1093/ilar/ilv016
  40. Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR. Animal models of external traumatic wound infections. Virulence. 2011 Jul-Aug;2(4):296-15. doi: 10.4161/viru.2.4.16840
  41. Giniuk VA. Metodika modelirovaniia ostrogo mestnogo gnoino-vospalitelnogo protsessa u laboratornykh zhivotnykh i provedeniia eksperimenta po lecheniiu poluchennykh gnoinykh ran s pomoshchiu fotoreguliatornoi i fotodinamicheskoi terapii. Med Zhurn. 2009;(1):44-46. https://medmag.bsmu.by/category27/article1266/ (In Russ.)
  42. Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell. 2013 Jun;12(3):525-30. doi: 10.1111/acel.12065
  43. Kamran P, Sereti KI, Zhao P, Ali SR, Weissman IL, Ardehali R. Parabiosis in mice: a detailed protocol. J Vis Exp. 2013 Oct 6;(80). doi: 10.3791/50556
  44. Mekonnen A, Sidamo T, Asres K, Engidawork E. In vivo wound healing activity and phytochemical screening of the crude extract and various fractions of Kalanchoe petitiana A. Rich (Crassulaceae) leaves in mice. J Ethnopharmacol. 2013 Jan 30;145(2):638-46. doi: 10.1016/j.jep.2012.12.002
  45. Mukherjee H, Ojha D, Bharitkar YP, Ghosh S, Mondal S, Kaity S, Dutta S, Samanta A, Chatterjee TK, Chakrabarti S, Mondal NB, Chattopadhyay D. Evaluation of the wound healing activity of Shorea robusta, an Indian ethnomedicine, and its isolated constituent(s) in topical formulation. J Ethnopharmacol. 2013 Aug 26;149(1):335-43. doi: 10.1016/j.jep.2013.06.045
  46. Kumar V, Khan A, Nagarajan K. Animal models for the evaluation of wound healing activity. Int Bull Drug Res. 2013;3(5):93-107. https://www.researchgate.net/publication/274010528_animal_models_for_the_evaluation_of_wound_healing_activity
  47. Fukai T, Takeda A, Uchinuma E. Wound healing in denervated rat skin. Wound Repair Regen. 2005 Mar-Apr;13(2):175-80. doi: 10.1111/j.1067-1927.2005.130208.x
  48. Yagmur C, Guneren E, Kefeli M, Ogawa R. The effect of surgical denervation on prevention of excessive dermal scarring: a study on rabbit ear hypertrophic scar model. J Plast Reconstr Aesthet Surg. 2011 Oct;64(10):1359-65. doi: 10.1016/j.bjps.2011.04.028
  49. Shanmugam VK, Tassi E, Schmidt MO, McNish S, Baker S, Attinger C, Wang H, Shara N, Wellstein A. Utility of a humanmouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing. Int Wound J. 2015 Dec;12(6):699-705. doi: 10.1111/iwj.12205
  50. Demarchez M, Sengel P, Prunieras M. Wound healing of human skin transplanted onto the nude mouse. I. An immunohistological study of the reepithelialization process. Dev Biol. 1986 Jan;113(1):90-96. doi: 10.1016/0012-1606(86)90110-7
  51. Otulakowski G, Zhou L, Fung-Leung WP, Gendimenico GJ, Samuel SE, Lau CY. Use of a human skin-grafted nude mouse model for the evaluation of topical retinoic acid treatment. J Invest Dermatol. 1994 Apr;102(4):515-18. doi: 10.1111/1523-1747.ep12373180
  52. Lee KO, Kim SN, Kim YC. Anti-wrinkle effects of water extracts of teas in hairless mouse. Toxicol Res. 2014 Dec;30(4):283-89. doi: 10.5487/TR.2014.30.4.283
  53. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm. 2018 Jun;127:130-41. doi: 10.1016/j.ejpb.2018.02.022
  54. Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol. 2019 Oct 1;138:854-65. doi: 10.1016/j.ijbiomac.2019.07.155
Address for correspondence:
230009, Belarus,
Grodno, Gorkii Str., 80,
Grodno State Medical University,
the 2nd Surgery Department,
tel.: +375 297 868643,
e-mail: dr_ruslan@mail.ru,
Dovnar Ruslan I.
Information about the authors:
Dovnar Ruslan I., PhD, Associate Professor of the 2nd Surgery Department Grodno State Medical University, Grodno, Republic of Belarus.
https://orcid.org/0000-0003-3462-1465.
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.490   |  

S.N. YAROSHKIN, S.A. SUSHKOU, L.A. FRALOU

POTENTIAL AND PERSPECTIVES OF INDIRECT REVASCULARIZATION IN TREATMENT OF LOWER LIMBS CRITICAL ISCHEMIA

Vitebsk State Medical University, Vitebsk,
The Republic of Belarus

This review was undertaken by a literature search of the International scientific database PubMed and Cochrane library. The review highlights the issues and perspectives of indirect revascularization in the patients with lower limbs critical ischemia. The study revealed that lower limbs critical ischemia remains the actual problem of angiosurgery, despite of the widespread introduction of angioplasty and open vascular reconstruction. However, angioplasty and bypass surgery revascularization cannot be performed in some category of patients, so that the further improvement of indirect revascularization techniques has been of great interest to researchers. The severity of the ischemic process is determined not only by the mechanical blood flow restriction but also by the angiogenic potential of the surrounding soft tissues, foremost muscular one. Therefore, in the case of technical irreparability of the main blood flow it remains possible to preserve the limb by creating new vascular networks in the muscular tissue. Revascularizing osteotrepanation of the lower limb bones is considered to be the optimal variant to achieve this result. The discontent of clinical outcomes occurred due to the slow development of the angiogenic effect, which in critical ischemia is fraught with loss of a limb until the maximal angiogenesis is reached. In recent years, cell therapy has become a very promising and advanced scientific research topic. So that its methods have been actively introduced into practice; they are easily combined with revascularizing osteotrepanation and are able significantly accelerate angiogenesis induced by surgical bone injury. In this regard, there is reason to believe that curative effect increases when revascularising osteotrepanation is combined with cell therapy, including the use of bone marrow aspirates.

Keywords: angiogenesis, arteriogenesis, cell therapy, critical limb ischemia, peripheral arteries diseases, revascularization
p. 490-503 of the original issue
References
  1. Bell P, Charlesworth D, DePalma R, Eastcott H, Eklöf B, Jamieson C, et al. The definition of critical ischemia of a limb Working Party of the International Vascular Symposium. Br J Surg. 1982 Dec;69(Is Suppl 6):S2. doi: 10.1002/bjs.1800691303
  2. Mills Sr J, Conte M, Armstrong D, Pomposelli F, Schanzer A, Sidawy A, Andros G. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J Vasc Surg. 2014 Jan;59(1):220-34. doi: 10.1016/j.jvs.2013.08.003
  3. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007 Jan;45(Suppl S):S5-67. doi: 10.1016/j.jvs.2006.12.037
  4. Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018 Apr 26;14:63-74. doi: 10.2147/VHRM.S125065. eCollection 2018.
  5. Abu Dabrh AM, Steffen MW, Undavalli C, Asi N, Wang Z, Elamin MB, Conte MS, Murad MH. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015 Dec;62(6):1642-51.e3. doi: 10.1016/j.jvs.2015.07.065
  6. Dosluoglu HH, Lall P, Harris LM, Dryjski ML. Long-term limb salvage and survival after endovascular and open revascularization for critical limb ischemia after adoption of endovascular-first approach by vascular surgeons. J Vasc Surg. 2012 Aug;56(2):361-71. doi: 10.1016/j.jvs.2012.01.054
  7. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, Fowkes FG, Gillepsie I, Ruckley CV, Raab G, Storkey H; BASIL trial participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005 Dec 3;366(9501):1925-34. doi: 10.1016/S0140-6736(05)67704-5
  8. Fernandez N, McEnaney R, Marone LK, Rhee RY, Leers S, Makaroun M, Chaer RA. Predictors of failure and success of tibial interventions for critical limb ischemia. J Vasc Surg. 2010 Oct;52(4):834-42. doi: 10.1016/j.jvs.2010.04.070
  9. Sukovatyh BS, Orlova AYu, Sukovatyh MB, Bolomatov NV. Hemodynamic and clinical effectiveness of the bone marrow cell transplantation in treatment of critical ischemia of the lower extremities. Vestn Nats Med-Khirurg Tsentra im NI Pirogova. 2019;14(4):27-31. doi: 10.25881/BPNMSC.2020.39.53.005 (In Russ.)
  10. Conte MS. Critical appraisal of surgical revascularization for critical limb ischemia. J Vasc Surg. 2013 Feb;57(2 Suppl):8S-13S. doi: 10.1016/j.jvs.2012.05.114
  11. Ziegler MA, Distasi MR, Bills RG, Miller SJ, Alloosh M, Murphy MP, Akingba AG, Sturek M, Dalsing MC, Unthank JL. Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion. Microcirculation. 2010 Jan;17(1):3-20. doi: 10.1111/j.1549-8719.2010.00008.x
  12. McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, Chan C, Martin GJ, Schneider J, Pearce WH, Taylor LM, Clark E. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002 Jun 18;136(12):873-83. doi: 10.7326/0003-4819-136-12-200206180-00008
  13. Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, Harthun NL, Weltman A, Dimaria JM, West AM, Kramer CM. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009 Aug 11;54(7):628-35. doi: 10.1016/j.jacc.2009.01.080
  14. Szuba A, Oka RK, Harada R, Cooke JP. Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vasc Med. 2006 Nov;11(3):155-63. doi: 10.1177/1358863x06074828
  15. Hamburg NM, Creager MA. Pathophysiology of intermittent claudication in peripheral artery disease. Circ J. 2017 Feb 24;81(3):281-89. doi: 10.1253/circj.CJ-16-1286
  16. Galland RB. Popliteal aneurysms: from John Hunter to the 21st century. Ann R Coll Surg Engl. 2007 Jul;89(5):466-71. doi: 10.1308/003588407X183472
  17. Matas R. Testing the Efficiency of the collateral circulation as a preliminary to the occlusion of the great surgical arteries. Ann Surg. 1911 Jan;53(1):1-43. doi: 10.1097/00000658-191101000-00001
  18. DeBakey ME, Lawrie GM, Glaeser DH. Patterns of atherosclerosis and their surgical significance. Ann Surg. 1985 Feb; 201(2):115131. doi: 10.1097/00000658-198502000-00001
  19. Simons M. Angiogenesis: where do we stand now? Circulation. 2005 Mar 29;111(12):1556-66. doi: 10.1161/01.CIR.0000159345.00591.8F
  20. Shepherd JT. The blood flow through the calf of the leg during acute occlusion of the femoral artery and vein. Circulation. 1952 Aug;6(2):281-85. doi: 10.1161/01.cir.6.2.281
  21. Hershey JC, Baskin EP, Corcoran HA, Bett A, Dougherty NM, Gilberto DB, Mao X, Thomas KA, Cook JJ. Vascular endothelial growth factor stimulates angiogenesis without improving collateral blood flow following hindlimb ischemia in rabbits. Heart Vessels. 2003 Jul;18(3):142-49. doi: 10.1007/s00380-003-0694-z
  22. Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol (1985). 2011 Jul;111(1):81-86. doi: 10.1152/japplphysiol.00141.2011
  23. Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015 Apr 24;116(9):1561-78. doi: 10.1161/CIRCRESAHA.115.303565
  24. Weiss DJ, Casale GP, Koutakis P, Nella AA, Swanson SA, Zhu Z, Miserlis D, Johanning JM, Pipinos II. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J Transl Med. 2013 Sep 25;11:230. doi: 10.1186/1479-5876-11-230
  25. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher L, Fowkes F, Hamburg N, Kinley S, Lookstein R, Misra S, Mureebe L, Olin J, Patel R, Regensteiner J, Schanzer A, Shishehbor M, Stewart K, Treat-Jacobson D, Walsh M. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017 Mar 21;135(12):e726-e779. doi: 10.1161/CIR.0000000000000471
  26. Yang HT, Ren J, Laughlin MH, Terjung RL. Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H301-10. doi: 10.1152/ajpheart.00160.2001
  27. Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, Goldberg AP. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001 Jun;49(6):755-62. doi: 10.1046/j.1532-5415.2001.49152.x
  28. Zaki M, Elsherif M, Tawfick W, El Sharkawy M, Hynes N, Sultan S. The Role of Sequential Pneumatic Compression in Limb Salvage in Non-reconstructable Critical Limb Ischemia. Eur J Vasc Endovasc Surg. 2016 Apr;51(4):565-71. doi: 10.1016/j.ejvs.2015.12.025
  29. Sen I, Agarwal S, Tharyan P, Forster R. Lumbar sympathectomy versus prostanoids for critical limb ischaemia due to non-reconstructable peripheral arterial disease. Cochrane Database Syst Rev. 2018 Apr 16;4(4):CD009366. doi: 10.1002/14651858.CD009366.pub2
  30. Zechlinski JJ, Hieb RA. Lumbar Sympathetic Neurolysis: How to and When to Use? Tech Vasc Interv Radiol. 2016 Jun;19(2):163-68. doi: 10.1053/j.tvir.2016.04.008
  31. Kokhan EP, Pinchuk OV. Razmyshleniia o poiasnichnoi simpatektomii. Gody i praktika. K 90-letiiu primeneniia metoda v Rossii Angiologiia i Sosudistaia Khirurgiia [Elektronnyi resurs]. 2017 [data obrashcheniia: 2020 Dek 20];23(2):186-90. http://www.angiolsurgery.org/magazine/2017/2/24.htm (In Russ.)
  32. Karanth VKL, Karanth TK, Karanth L. Lumbar sympathectomy techniques for critical lower limb ischaemia due to non-reconstructable peripheral arterial disease. Cochrane Database Syst Rev. 2016 Dec;2016(12):CD011519. Published online 2016 Dec 13. doi: 10.1002/14651858.CD011519.pub2
  33. Shevtsov VI, Gordiyevskikh NI, Yerofeyev SA. Limb circulation status in the conditions of automatic distraction. Genii Ortopedii [Elektronnyi resurs]. 2000 [data obrashcheniia: 2020 Dek 20];(1):11-15. http://ilizarov-journal.com/index.php/go/article/view/1797/1774 (In Russ.)
  34. Shchurov VA, Popkov AV, Aranovich AM. Polarographic monitoring of regional circulation state during surgical leg lengthening. Genij Ortopedii. 2015;(4):76-79. doi: 10.18019/1028-4427-2015-4-76-79 (In Russ.)
  35. Korebelnikov Yu A, Shchurova EN, Rechkin MYu. The study of the dynamics of oxygen and carbon dioxide transcutaneous tension for re-tunnelization procedures in patients with obliterating atherosclerosis of the lower limbs. Genii Ortopedii [Elektronnyi resurs]. 2011 [data obrashcheniia: 2020 Dek 20];(3):112-16. http://ilizarov-journal.com/index.php/go/article/view/558/536 (In Russ.)
  36. Ishenin IuM. Doctrine of mechanical tunneling. Klin Meditsiny [Elektronnyi resurs]. 2010 [data obrashcheniia: 2020 Dek 20];3(2):51-54. http://vskmjournal.org/images/Files/Issues_Archive/2010/Issue_2/VSKM_2010_N_2_p51-54.pdf (In Russ.)
  37. Zusmanovich FN. Novyi metod aktivizatsii kollateralnogo krovoobrashcheniia revaskuliariziruiushchaia osteotrepanatsiia. Vestn. khirurgii im II Grekova. 1991;146(5-6):114-15. (In Russ.)
  38. Eroshkin SN, Sachek MG. The possibilities of the application of venous blood acid-base balance indices of the lower extremity to predict the effectiveness of revascularizating osteotrepanation in patients with diabetic foot syndrome Vestn Eksperim i Klin Khirurgii [Elektronnyi resurs]. 2013 [data obrashcheniia: 2020 Dek 20];VI(3):292-98. https://vestnik-surgery.com/index.php/journal/article/view/93/65:292-98 (In Russ.)
  39. Larionov AA, Shchurova EN, Rechkin MY. Potentials of the technique of repeated osteoperforations for limb circulation improvement in case of chronic ischemia. Genii Ortopedii [Elektronnyi resurs]. 2020 20];(4):32-35. http://ilizarovjournal.com/index.php/go/article/view/1727/ (In Russ.)
  40. Sveshnikov AA, Larionov AA, Bunov VS, Smotrova LA, Larionova TA, Rechkin MY. Circulation status in lower limbs during blood supply stimulation in patients with obliterating endarteritis and atherosclerosis. Genii Ortopedii [Elektronnyi resurs]. 2020 20];(2):68-73. http://ilizarov-journal.com/index.php/go/article/view/1783 (In Russ.)
  41. Rusin VI, Korsak VV, Boldizhar PA. Rusin VV, Pekar MI, Gorlenko FV, Mashura VV, Langazo OV. Long-term surgical treatment results of critical lower limb ischemia following simultaneous direct and indirect revascularization. Novosti Khirurgii. 2017;25(2):131-39. doi: 10.18484/2305-0047.2017.2.131 (In Russ.)
  42. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 Feb 14;275(5302):964-67. doi: 10.1126/science.275.5302.964
  43. Urbán VS, Kiss J, Kovács J, Gócza E, Vas V, Monostori E, Uher F. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells. 2008 Jan;26(1):244-53. doi: 10.1634/stemcells.2007-0267
  44. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-84. doi: 10.1634/stemcells.22-3-377
  45. Bulgin DV, Andreeva OV. Therapeutic angiogenesis by growth factor and bone marrow mononuclear cells administration:biologocal foundation a nd clinical prospects. Russian Journal of Transplantology and Artificial Organs. 2015;17(3):89-111. doi: 10.15825/1995-1191-2015-3-89-111
  46. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 Aug 10;360(9331):427-35. doi: 10.1016/S0140-6736(02)09670-8
  47. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011 Apr;92(1):26-36. doi: 10.1016/j.diabres.2010.12.010
  48. Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, Stern TP, Watling S, Bartel RL. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012 Jun;20(6):1280-6. doi: 10.1038/mt.2012.52
  49. Peeters Weem SM, Teraa M, de Borst GJ, Verhaar MC, Moll FL. Bone marrow derived cell therapy in critical limb ischemia: a meta-analysis of randomized placebo controlled trials. Eur J Vasc Endovasc Surg. 2015 Dec;50(6):775-83. doi: 10.1016/j.ejvs.2015.08.018
  50. Orekhov PYu, Konoplyannikov MA, Baklaushev VP, Kalsin VA, Averyanov AV, Konopliannikov AG, Habazov RI, Troitskiy AV. Bone marrow stem cells for the critical limb ischemia treatment: biological aspects and clinical application. Geny i Kletki. 2018;XIII(1):20-34. doi: 10.23868/201805002 (In Russ.)
  51. Biscetti F, Bonadia N, Nardella E, Cecchini A, Landolfi R, Flex A. The role of the stem cells therapy in the peripheral artery disease. Int J Mol Sci. 2019 May;20(9):2233. doi: 10.3390/ijms20092233
Address for correspondence:
210027, Republic of Belarus,
Vitebsk, Frunze Avenue, 27,
Vitebsk State Medical University,
the Department of General Surgery,
e-mail: sergionik@gmail.com,
Yaroshkin Siarhei N.
Information about the authors:
Yaroshkin Siarhei N., PhD, Associate Professor of the Department of General Surgery, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0003-2764-1812
Sushkou Siarhei A., PhD, Associate Professor, Vice-Rector for Research Work, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0002-7524-6182
Fralou Leanid A., PhD, Associate Professor, Head of the Department of General Surgery, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0003-3357-4409

CASE REPORTS

DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.504   |  

V.S. ZHUKOVSKIY, M.V. PANKIV, V.V. CHAPLYK, V.S. KOZOPAS, V.V. HUMENIUK

INFECTED URACHAL CYST IN AN ADULT

Danylo Halytskyy Lviv National Medical University, Lviv,
Ukraine

Urachus is a tubular formation originating from the top of the urinary bladder and directed to the umbilicus between the peritoneum and the transverse fascia of the abdomen. In an embryo, it serves to divert primary urine to the amniotic fluid. In case, if obliteration of the duct does not occur until the birth, various pathological processes can develop in it. The most common abnomalies of urachus reported in adults are an infected urachal cyst and urachal carcinoma. These diagnoses are not always easy to make due to atypical symptoms of their manifestation and the rarity of these diseases just two cases per 100,000 hospitalizations of adults. A 22-year-old man with a subcutaneous abscess and an external fistula located in the umbilical region with redness of the surrounding skin. 16 hours after dissection and drainaging of the abscess, the patients condition worsened, pain in the lower parts of the abdomen began, muscle tension of the anterior abdominal wall and inflammatory changes in blood tests were revealed. The patient was operated on for peritonitis. A two-chambered urachus cyst of the hourglass type, with the formation of a dense consistency calculus in one of the cavities, which perforated into the abdominal cavity This clinical case is of the great interest from the point of view of the atypical course and the treatment of a rather rare anomaly in adults. The publication will remind emergency medicine physicians about the possibility of infected urachus in patients with symptoms of acute abdomen.

Keywords: infected urachal cyst in an adult, complications, acute abdomen, diagnosis, surgical management
p. 504-509 of the original issue
References
  1. Mahato NK, Mittal MM, Aggarwal R, Munjal KM. Encysted urachal abscess associated with a premalignant lesion in an adult male. Urotoday Int J. 2010 Oct;3(5). doi: 10.3834/uij.1944-5784.2010.10.01
  2. Ueno T, Hashimoto H, Yokoyama H, Ito M, Kouda K, Kanamaru H. Urachal anomalies: ultrasonography and management. J Pediatr Surg. 2003 Aug;38(8):1203-7. doi: 10.1016/s0022-3468(03)00268-9
  3. Ward TT, Saltzman E, Chiang S. Infected urachal remnants in the adult: case report and review. Clin Infect Dis. 1993 Jan;16(1):26-29. doi: 10.1093/clinids/16.1.26
  4. Spataro RF, Davis RS, McLachlan MS, Linke CA, Barbaric ZL. Urachal abnormalities in the adult. Radiology. 1983 Dec;149(3):659-63. doi: 10.1148/radiology.149.3.6647841
  5. Yiee JH, Garcia N, Baker LA, Barber R, Snodgrass WT, Wilcox DT. A diagnostic algorithm for urachal anomalies. J Pediatr Urol. 2007 Dec;3(6):500-4. doi: 10.1016/j.jpurol.2007.07.010
  6. Musko N, Dobruch J, Piotrowicz S, Szostek P, Borówka A. Infected urachal cyst in a young adult. Cent European J Urol. 2014;67(2):199-201. doi: 10.5173/ceju.2014.02.art19
  7. Lucerna A, Lee J, Espinosa J, Hertz R, Scali V. An Adult with a Remnant Urachus Anomaly Diagnosed in the Emergency Department. Case Rep Emerg Med. 2018 Aug 14;2018:6051871. doi: 10.1155/2018/6051871. eCollection 2018.
  8. Tazi F, Ahsaini M, Khalouk A, Mellas S, Stuurman-Wieringa RE, Elfassi MJ, Farih MH. Abscess of urachal remnants presenting with acute abdomen: a case series. J Med Case Rep. 2012 Jul 30;6:226. doi: 10.1186/1752-1947-6-226
  9. Gusev AA, Yacyk SP, Kirgizov 1V, Dyakonova EYu, Karpachev SA, Ryazanov MV. Urachus pathology: literature review, modern aspects of the surgical manual and own clinical experience of laparoscopic treatment. Pediatriia (Pril Consilium Medicum). 2018;(3):80-84. doi: 10.26442/2413-8460_2018.3.80-84 (In Russ.)
  10. Ashley RA, Inman BA, Routh JC, Rohlinger AL, Husmann DA, Kramer SA. Urachal anomalies: a longitudinal study of urachal remnants in children and adults. J Urol. 2007 Oct;178(4 Pt 2):1615-18. doi: 10.1016/j.juro.2007.03.194
  11. Yoo KH, Lee SJ, Chang SG. Treatment of infected urachal cysts. Yonsei Med J. 2006 Jun 30;47(3):423-27. doi: 10.3349/ymj.2006.47.3.423
  12. Ekwueme KC, Parr NJ. Infected urachal cyst in an adult: a case report and review of the literature. Cases J. 2009 Jun 25;2:6422. doi: 10.4076/1757-1626-2-6422
  13. Gami BL, Biswas S. An infected urachal cyst. BMJ Case Rep. 2013. doi: 10.1136/bcr-2012-007105.
  14. Kwok C.M. Infected urachal cyst in an adult: a laparoscopic approach. Case Rep Gastroenterol. 2016 May-Aug;10(2):269-74. Published online 2016 Jun 14. doi: 10.1159/000446642
  15. Dickhoff C, Campo MM, Ophof PJ, Makkus AF, Tan KG, Plaisier PW. Urachus fistula: a rare first presentation of diverticulitis. Case Rep Gastroenterol. 2008 Sep 20;2(3):287-90. doi: 10.1159/000151580
  16. Hsu CC, Liu YP, Lien WC, Lai TI, Chen WJ, Wang HP. Urachal abscess: a cause of adult abdominal pain that cannot be ignored. Am J Emerg Med. 2005 Mar;23(2):229-30. doi: 10.1016/j.ajem.2004.03.012
  17. Agatstein EH, Stabile BE. Peritonitis due to intraperitoneal perforation of infected urachal cysts. Arch Surg. 1984 Nov;119(11):1269-73. doi: 10.1001/archsurg.1984.01390230041009
  18. Diehl K. A rare case of urachal calculus. Br J Urol. 1991 Mar;67(3):327-28. doi: 10.1111/j.1464-410x.1991.tb15147.x
  19. Wan YL, Lee TY, Tsai CC, Chen SM, Chou FF. The role of sonography in the diagnosis and management of urachal abscesses. J Clin Ultrasound. 1991 May;19(4):203-8. doi: 10.1002/jcu.1870190403
  20. Zafar S, Shah R, Dinneen M, Davies C. Imaging of Urachal remnant diseases. Congress: ECR 2019. Poster Number:C-2770. doi: 10.26044/ecr2019/C-2770
  21. Allen JW, Song J, Velcek FT. Acute presentation of infected urachal cysts: case report and review of diagnosis and therapeutic interventions. Pediatr Emerg Care. 2004 Feb;20(2):108-11. doi: 10.1097/01.pec.0000113880.10140.19
  22. Castillo OA, Vitagliano G, Olivares R, Sanchez-Salas R. Complete excision of urachal cyst by laparoscopic means: a new approach to an uncommon disorder. Arch Esp Urol. 2007 Jun;60(5):607-11. doi: 10.4321/s0004-06142007000500020
  23. Elkbuli A, Kinslow K, Ehrhardt JD Jr, Hai S, McKenney M, Boneva D. Surgical management for an infected urachal cyst in an adult: Case report and literature review. Int J Surg Case Rep. 2019;57:130-33. doi: 10.1016/j.ijscr.2019.03.041
  24. Mesrobian HG, Zacharias A, Balcom AH, Cohen RD. Ten years of experience with isolated urachal anomalies in children. J Urol. 1997 Sep;158(3 Pt 2):1316-8. doi: 10.1097/00005392-199709000-00173
  25. Yu JS, Kim KW, Lee HJ, Lee YJ, Yoon CS, Kim MJ. Urachal remnant diseases: spectrum of CT and US findings. Radiographics. 2001 Mar-Apr;21(2):451-61. doi: 10.1148/radiographics.21.2.g01mr02451
  26. Kwok CM. Infected urachal cyst in an adult: a laparoscopic approach. Case Rep Gastroenterol. 2016 Jun 14;10(2):269-74. doi: 10.1159/000446642. eCollection 2016 May-Aug.
  27. Chiarenza SF, Bleve C. Laparoscopic management of urachal cysts. Transl Pediatr. 2016 Oct;5(4):275-81. doi: 10.21037/tp.2016.09.10
  28. Passoni S, Guerra A, Marengo M. Laparoscopic treatment of an infected urachalcyst and diverticulum in a young adult: Presentation of a case and review of the literature. Int J Surg Case Rep. 2018;49:87-90. doi: 10.1016/j.ijscr.2018.06.018
Address for correspondence:
79010, Ukraine, Lviv, Pekarskaya Str. 69,
Danylo Halytskyy Lviv National Medical University, the Department of Emergency Medicine
and Military Medicine
tel. mobile: +38 067 725 32 39,
e-mail: zukovskiy@ukr.net,
Zhukovskiy Vladimir S.
Information about the authors:
Zhukovskiy Vladimir S., PhD, Associate Professor of the Department of Emergency Medicine and Military Medicine, Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine.
http://orcid.org/ 0000-0002-0594-5316
Pankiv Maryana V., PhD, Post-Graduate Student, of the Anatomy Department , Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine.
http://orcid.org/ 0000-0002-3714-2577
Chaplyk Viktor V., PhD, Associate Professor, Head of the Depatment of Emergency Medicine and Military Medicine, Danylo Halytskyy Lviv National Medical University, Lviv , Ukraine.
https://orcid.org/0000-0002-1633-0712
Kozopas Viktor S., PhD, Associate Professor of the Department of Emergency Medicine and Military Medicine, Danylo Halytskyy Lviv National Medical University, Lviv , Ukraine.
http://orcid.org/0000-0003-3451-6016
Humeniuk Vasiliy V., PhD(Ped.), Associate Professor of the Department of Emergency Medicine and Military Medicine, Danylo Halytskyy Lviv National Medical University, Lviv , Ukraine.
https://orcid.org/0000-0003-2736-3875
DOI: https://dx.doi.org/10.18484/2305-0047.2021.4.510   |  

G.I. YEMETS, O.V. TELEHUZOVA, YE.A. CHERNETSKYI, G.B. MANKOVSKYI, YE.YU. MARUSHKO

MINI-INVASIVE AORTIC VALVE REPLACEMENT IN 97-YEAR PATIENT

Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev,
Ukraine

This review focuses on the choice of treatment strategy in elderly patients with severe aortic stenosis. The variability of surgical approaches and options, often limited due to excessive caution associated with the age-relative peculiarities of such patients has been shown in this study. The effectiveness of a multidisciplinary and integrated approach has been demonstrated, the result of which is measured by improving the quality and duration of the patients life. A case of mini-invasive aortic valve replacement in a 97-year-old patient is unique for the world literature. The key indicators that undoubtedly influence the choice of treatment tactics for an elderly patient are: the patients general condition, comorbidity and the ability of quick postoperative rehabilitation. Thus, minimally invasive surgery and transcatheter aortic valve implantation (TAVI) are considered to be the methods of choice for these patients. TAVI as an option is not always available, particular in countries with unstable economic conditions. In the given case, a multi-stage preoperative preparation of patient was performed to stabilize the general condition and to compensate the comorbidity. Thus, the preoperative period optimization for high-risk patients facilitated the rapid rehabilitation and adaptation after the operation. Any surgical procedure has risks associated with it, so the hybrid approach, widely used in a current clinical cardiac surgery, is especially valuable in the context of treating elderly patients, since it minimizes these risks.

Keywords: minimally invasive surgery, clinical observation, aortic valve stenosis, the elderly patients, cardiac surgery
p. 510-517 of the original issue
References
  1. Kwiecień A, Hrapkowicz T, Filipiak K, Przybylski R, Kaczmarczyk M, Kowalczuk A, Zembala M. Surgical treatment of elderly patients with severe aortic stenosis in the modern era review. Kardiochir Torakochirurgia Pol. 2018 Sep;15(3):188-95. doi: 10.5114/kitp.2018.78445
  2. Osnabrugge RL, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM, Bogers AJ, Piazza N, Kappetein AP. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013 Sep 10;62(11):1002-12. doi: 10.1016/j.jacc.2013.05.015
  3. Pellikka PA, Sarano ME, Nishimura RA, Malouf JF, Bailey KR, Scott CG, Barnes ME, Tajik AJ. Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up. Circulation. 2005 Jun 21;111(24):3290-95. doi: 10.1161/CIRCULATIONAHA.104.495903
  4. Chizner MA, Pearle DL, deLeon AC Jr. The natural history of aortic stenosis in adults. Am Heart J. 1980 Apr;99(4):419-24. doi: 10.1016/0002-8703(80)90375-0
  5. Winkley Shroyer AL, Bakaeen F, Shahian DM, Carr BM, Prager RL, Jacobs JP, Ferraris V, Edwards F, Grover FL. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: The Driving Force for Improvement in Cardiac Surgery. Semin Thorac Cardiovasc Surg. 2015 Summer;27(2):144-51. doi: 10.1053/j.semtcvs.2015.07.007
  6. Rao PN, Kumar AS. Aortic valve replacement through right thoracotomy. Tex Heart Inst J. 1993;20(4):307-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC325118/
  7. Phan K, Xie A, Di Eusanio M, Yan TD. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann Thorac Surg. 2014 Oct;98(4):1499-511. doi: 10.1016/j.athoracsur.2014.05.060
  8. Bloomfield P. Choice of heart valve prosthesis. Heart. 2002 Jun;87(6):583-89. doi: 10.1136/heart.87.6.583
  9. ElBardissi AW, Shekar P, Couper GS, Cohn LH. Minimally invasive aortic valve replacement in octogenarian, high-risk, transcatheter aortic valve implantation candidates. J Thorac Cardiovasc Surg. 2011 Feb;141(2):328-35. doi: 10.1016/j.jtcvs.2010.08.056
Address for correspondence:
04050 Ukraine, Kiev,
Ilyenko Str., Ukrainian Childrens Cardiac
Center of the Ministry of Health of Ukraine,
tel. +3 80687044822,
e-mail: teleguzova5@gmail.com,
Telehuzova Alexandra V.
Information about the authors:
Yemets Gleb I., Cardiovascular Surgeon, the Department of Congenital and Acquired Heart Defects in Adults and Adolescents, Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev, Ukraine.
https://orcid.org/0000-0002-6139-6235
Telehuzova Alexandra V., Cardiologist, the Department of Congenital and Acquired Heart Defects in Adults and Adolescents, Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev, Ukraine.
https://orcid.org/0000-0003-4801-093X
Chernetskiy Yevheniy A., Cardiologist, the Department of Congenital and Acquired Heart Defects in Adults and Adolescents, Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev, Ukraine.
https://orcid.org/0000-0002-4487-6819
Mankovsky Georgiy B., PhD, Interventional Cardiologist, the Department of Emergency X-Ray Diagnostics, Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev, Ukraine.
https://orcid.org/0000-0003-4980-4571
Marushko Yevheniy Yu., PhD, Interventional Cardiologist, the Department of Emergency X-Ray Diagnostics, Ukrainian Childrens Cardiac Center of the Ministry of Health of Ukraine, Kiev, Ukraine.
https://orcid.org/0000-0002-0696-9926
Contacts | ©Vitebsk State Medical University, 2007