Year 2010 Vol. 18 No 5

LECTURES, REVIEWS

GAIN YU.M., KISELYOVA E.P.

PROSPECTS AND POSSIBILITIES OF CELL TRANSPLANTATION AT RESTORING OF EXTENSIVE SOFT TISSUE DEFECTS OF TRAUMATIC ORIGIN

Objectives. To estimate the efficacy of modern treatment techniques of cell transplantation, used to restore the extensive defects of soft tissues at a trauma of various etiology and to determine the most perspective directions for the development of the given technologies in the Republic of Belarus.
Methods. Modern native and foreign literature was analyzed dealing with theoretical aspects as well as clinical experience of application of cell technologies of the regenerative medicine in restoring soft tissues extensive defects of the traumatic origin.
Results. The comparative analysis of native and foreign literature was carried out with the efficacy estimation of the applied cell transplantation techniques in the experiment and in a clinic with the therapeutic aim. One should accept the therapeutic technologies based on the application of mesenchymal stem cells which permit to avoid the main disadvantages linked with the procedure of autologous tissues transplantation as the most perspective direction of substitution of the extensive tissue defects of the traumatic and other origins. The advantages of the given technique are the following: 1) small amount of aspirate containing mesenchymal stem cells obtained from the bone marrow, adipose tissue and other sources can be increased up to necessary amount in the vitro and then used to treat a number of diseases including the substitution of the extensive tissue defects forming as the result of trauma and other pathologies; 2) mesenchymal stem cells can be differentiated in several cell generations, thus giving the possibility to use total cell resource for restoring different tissues in contrast to the principle of healthy tissue intake for restoring their own kind at autologous tissues transplantation; 3) mesenchymal stem cells can be introduced in the biocompatible grafts, transplanted to the places of anatomical defects for further reconstruction of the damaged organ or tissue; 4) treatment of different diseases and traumas with application of mesenchymal stem cells can be autologous and at the same time solve the problems dealing with the immune reaction, vector-borne transmission of pathogens, wear and tear of synthetic materials, allergic reaction to the artificial implants.
Conclusions. Prospects of the regenerative medicine development based on the cellular technologies were and are rather impressive and they continue to attract attention of scientists all over the world. One may suppose that in the nearest future cell transplantation will take its rightful place in the arsenal of treatment for wounds, burns and for restoring a wide range of tissues in the human body.

Keywords: regeneration, stem cells, tissue engineering, burns, transplantation
p. 133 – 143 of the original issue
References
  1. Брюсов, П. Г. Оказание специализированной хирургической помощи при тяжелой механической травме / П. Г. Брюсов, Н. А. Ефименко, В. Е. Розанов // Вестн. хирургии. – 2001. – Т. 160, № 1. – С. 43-47.
  2. Парамонов, Б. А. Ожоги: руководство для врачей / Б. А. Парамонов, Я. О. Порембский, В. Г. Яблонский. – СПб.: СпецЛит, 2000. – 480 с.
  3. Лебедев, Н. В. Лечебно-диагностическая тактика при повреждениях живота у пострадавших сочетанной травмой: автореф. дис. ... д-ра мед. наук: 14.00.27 / Р. В. Лебедев. – М., 2003. – С. 40.
  4. Mooney, D. P. Multiple trauma: liver and spleen injury. 19 / D. P. Mooney // Curr. Opin. Pediat. – 2002. – Vol. 14, N 4. – Р. 482-485.
  5. Лаврухин, Ю. Н. Методы лечения остаточных ран у обожжённых / Ю. Н. Лаврухин, Е. В. Чеглаков, В. В. Арефьев // Вестн. неотлож. и восстановит. мед. – 2005.– Т. 6, № 2. – С. 386-387.
  6. 6. Brigham, P. A. Burnincidence and medical care use in the United States: estimates, trends, and data sources / P. A. Brigham // J. Burn Care Rehabil. – 1996. – N 17. – P. 95-107.
  7. Use of breast reconstruction after mastectomy following the Women’s Health and Cancer Rights Act / A. Alderman [et al.] // JAMA. – 2006. – Vol. 295. – P. 387-388.
  8. Ермолов, А. С. Применение биологически активных раневых покрытий, стимулирующих регенерацию эпителия ожоговых ран IIIА степени / А. С. Ермолов, С. В. Смирнов, В. Б. Хватов // Клеточные технологии в биологии и медицине. – 2008. – T. 3. – C. 166-172.
  9. Craniofacial tissue engineering / J. J. Mao [et al.] // Dent. Res. In. Press. – 2006. – Vol. 15. – P. 499-526.
  10. Brey, E. M. Tissue engineering applied to reconstructive surgery / E. M. Brey, C. Patrick // Eng. Med. Biol. Mag. – 2000. – Vol. 19. – P. 122.
  11. Patrick, C. W. Tissue engineering strategies for adiposetissue repair / C. W. Patrick // Anat. Rec. – 2001. – Vol. 263. – P. 361.
  12. Garfein, E. S. Clinical applicationsof tissue engineered constructs / E. S. Garfein, D. Orgill, J. Pribaz // Clin. Plast. Surg. – 2003. – Vol. 30. – P. 485.
  13. The impact of biomolecular medicine and tissue engineering on plastic surgery in the 21st century / H. P. Lorenz [et al.] // Plast. Reconstr. Surg. – 2000. – Vol. 105. – P. 24-67.
  14. Ehrlich, H. P. Understanding experimental biology of skin equivalent: from laboratory to clinical use in patients with burns and chronic wounds / H. P. Ehrlich // Am. J. Surg. – 2004. – Vol. 187. – P. 29-33.
  15. Isolating a pure population of epidermalstem cells for use in tissue engineering / M. Dunnwald [et al.] // Exp. Dermatol. – 2001. – Vol. 10. – P. 45-54.
  16. Evaluation of wound healing effect on skindefect nude mice by using human dermis-derived mesenchymalstem cells / C. K. Perng [et al.] // Transplant. Proc. – 2006. – Vol. 38. – P. 3086-3087.
  17. In vitro chondrogenesis of bone marrow derived mesenchymal stem cells in a photopolymerizing hydrogel / C. G. Williams [et al.] // Tissue Eng. – 2003. – Vol. 9. – P. 679-688.
  18. Butler, D. L. Perspectives on cell and collagen composites for tendon repair / D. L. Butler, H. A. Awad // Clin. Orthop. – 1999. – Vol. 367. – P. 324-332.
  19. Multilineage cells fromhuman adipose tissue: Implications for cell-based therapies / P. A. Zuk [et al.] // Tissue Eng. – 2001. – Vol. 7. – P. 211-228.
  20. Hart, D. Overcoming complications of breast implants / D. Hart // Plast. Surg. Nurs. – 2003. – Vol. 23. – P. 55.
  21. Long-term implantation of preadipocyte-seeded PLGA scaffolds / C. W. Patrick [et al.] // Tissue Eng. – 2002. – Vol. 8. – P. 283-293.
  22. Takezawa, T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior / T. Takezawa // Biomaterials. – 2003. – Vol. 24. – P. 22-67.
  23. Valencia, I. C. Skin grafting / I. C. Valencia, A. Falabella, W. Eaglstein // Dermatol. Clin. – 2000. – Vol. 18, N 5. – P. 21-32.
  24. Alhadlaq, A. Mesenchymal stem cells: Isolation and therapeutics / A. Alhadlaq, J. Mao // Stem. Cells Dev. – 2004. – Vol. 13. – P. 436-448.
  25. Rheinwald, J. G. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells / J. G. Rheinwald, H. Green // Cell. – 1975. – Vol. 6, N 3. – P. 331-343.
  26. Rheinwald, J. G. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes / J. G. Rheinwald, H. Green // Nature. – 1977. – Vol. 265. – P. 421-424.
  27. Multicentre experience in the treatment of burns with autologous and allogenic cultured epitelium, fresh or preserved in a frozen state / M. De Luca [et al.] // Burns. – 1989. – Vol. 15, N 5. – P. 303-309.
  28. Kumagai, M. Clinical application of autologous cultured epithelia for the treatment of burn wounds and burn scars / M. Kumagai // Plast. Reconstr. Surg. – 1988. – Vol. 1. – P. 99-111.
  29. Fibroblast growthfactor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro / C. J. Long [et al.] // J. Biol. Chem. – 2000. – Vol. 275, N 13. – P. 9-18.
  30. Ladet, S. Multi-membrane hydrogels / S. Ladet, L. David, A. Domard // Nature. – 2008. – Vol. 452. – P. 76.
  31. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering / A. Montembault [et al.] // Biochimie. – 2006. – Vol. 88. – P. 551.
  32. Davenport, R. J. What controls organ regeneration? / R. J. Davenport // Science. – 2005. – Vol. 309. – P. 84.
  33. Предшественники костной и гемопоэтической тканей. Анализ гетеротопических трансплантаций костного мозга / А. Я. Фриденштейн [и др.] // Цитология. – 1968. – T. 10, № 5. – С. 557-567.
  34. Filip, S. Issues in stem cell plasticity / S. Filip, D. English, J. Mokry // J. Cell Mol. Med. – 2004. – Vol. 8. – P. 572-577.
  35. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts / W. S. Kim [et al.] // J. Dermatol. Sci. – 2007. – Vol. 48. – P. 15-24.
  36. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer / M. Florek [et al.] // Cell Tissue. Res. – 2005. – Vol. 319. – P. 15-26.
  37. Bone marrow cells regenerate infarcted myocardium / D. Orlic [et al.] // Nature. – 2001. – Vol. 410. – P. 701-705.
  38. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium / L. B. Balsam [et al.] // Nature. – 2004. – Vol. 428. – P. 668-673.
  39. Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects / J. G. Shake [et al.] // Ann. Thorac. Surg. – 2002. – Vol. 73. – P. 1919-1925.
  40. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction / B. E. Strauer [et al.] // Dtsch. Med. Wochenschr. – 2001. – Vol. 126. – P. 932-938.
  41. Friedenstein, A. J. The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells / A. J. Friedenstein, R. Chailakhjan, K. Lalykina // Cell Tissue Kinet. – 1970. – Vol. 3. – P. 393-403.
  42. Pittenger, M. F. Mesenchymal stem cells and their potential as cardiac therapeutics / M. F. Pittenger, B. J. Martin // Circ. Res. – 2004. – Vol. 95. – P. 9-20.
  43. Biological features of mesenchymal stem cells from human bone arrow / Z. Guo [et al.] // Chin. Med. J. (Engl.). – 2001. – Vol. 114. – P. 950-953.
  44. Allen, M. R. Periosteum: biology, regulation, and response to osteoporosis therapies / M. R. Allen, J. Hock, D. Burr // Bone. – 2004. – Vol. 35. – P. 1003-1012.
  45. Barry, F. P. Biology and clinical applications of mesenchymal stem cells / F. P. Barry // Brith Defects Res. C. Embryo Today. – 2003. – Vol. 69. – P. 250-256.
  46. Mao, J. J. Stem cell driven regeneration of synovial joints / J. J. Mao // Biol. Cell. – 2005. – Vol. 97. – P. 289-301.
  47. Archer, C. W. Development of synovial joints / C. W. Archer, G. Dowthwaite, F. West // Birth Defects Res. C. Embryo Today. – 2003. – Vol. 69. – P. 144-155.
  48. A mechanism underlying the movement requirement for synovial joint cavitation / G. Dowthwaite [et al.] // Matrix Biol. – 2003. – Vol. 22. – P. 311-322.
  49. Young, R. Stem Cell Summit. Analysis and market forecast, 2009-2019. – Wayne: RPY Publications. 2009. – 112 р.
Contacts | ©Vitebsk State Medical University, 2007-2023