This journal is
indexed in Scopus

Year 2008 Vol. 16 No 2




The influence of diet on different pathophysiological processes in the human organism is currently the point of interest. All nutritious substances, which are not synthesized in the human metabolism (including essential fatty acids) can possess direct or mediated regulatory effect on pathophysiological and biochemical processes. More than 30% of cancer cases can be linked with premorbid diet and fatty food consumption. Fatty acids are the components of membrane phospholipids and the precursors of multiple biological active substances. They participate in different regulatory processes including apoptosis and DNA expression regulation and therefore participate in oncogenesis and tumour progression. By now many mechanisms of interaction between cancer and fatty acids composition have been proposed. The aim of this investigation is to determine the fatty acids spectrum in healthy women, patients with benign mammary tumours and breast cancer. It has been determined that serum myristic acid content significantly decreases in benign and malignant breast tumours. Palmitic acid and stearic acid content is stable in investigated groups.

Keywords: breast cancer, saturated fatty acids.
p. 71 81 of the original issue
  1. Doll, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today / R. Doll, R. Peto // J. Natl. Cancer Inst. 1981. Vol. 66. P. 1191-1308.
  2. Lipworth, L. Epidemiology of breast cancer / L. Lipworth // J. Cancer Prev. 1995. Vol. 4. P. 7-30.
  3. Dietary factors and risk of breast cancer: combined analysis of 12 casecontrol studies / G. R. Howe [et al.] // J. Natl. Cancer Inst. 1990. Vol. 82. P. 561-569.
  4. Fatty acid composition of the subcutaneous adipose tissue and risk of proliferative benign breast disease and breast cancer / S. J. London [et al.] // J. Natl. Cancer Inst. 1993. Vol. 85. P. 785-793.
  5. Effect of polyunsaturated (PUFA n-6) and saturated fatty acid-rich diets on macrophage metabolism and function / A. R. Guimaraes [et al.] // Biochemistry International. 1991. Vol. 23. P. 533-543.
  6. Cellular uptake and intracellular trafficking of long chain fatty acids / M. J. McArthur [et al.] // Lipid Res. 1999. Vol. 40. P. 1371-1383.
  7. Identification of human acetyl-CoA carboxylase isozymes in tissue and in breast cancer cells / L. Witters [et al.] // International Journal of Biochemistry. 1994. Vol. 26. P. 589-594.
  8. BRCA1 interacts with acetyl-CoA carboxylase throuch its tandem of BRCT domains / C. Magnard [et al.] // Oncogene. 2002. Vol. 21. P. 6729-6739.
  9. Palmitate-induced apoptosis of microvascular endothelial cells and pericytes / S. Yamagishi // Mol. Med. Vol. 8. P. 179-184.
  10. Listenberger, L. L. Palmitate-induced apoptosis occurs through a ceramide-independent pathway / L. L. Listenberger, D. S. Ory, J. E. Schaffer // J. Biol. Chem. 2001. Vol. 276. P. 14890-14895.
  11. Hardy, S. Oleate Activates Phosphatidylinositol 3-Kinase and Promotes Proliferation and Reduces Apoptosis of MDA-MB-231 Breast Cancer Cells, Whereas Palmitate Has Opposite Effects / S. Hardy, Y. Langelier, M. Prentki // Cancer Res. 2000. Vol. 60, N22. P. 6353-6358.
  12. Role for Protein Phosphatase 2A, but not atypical Protein Kinase C zeta, in The Inhibition of Protein Kinase B/Akt and Glycogen Synthesis by Palmitate / R. Cazzoll [et al.] // Diabetes. 2001. Vol. 50. P. 2210-2218.
  13. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling / G. C. Sparagna [et al.] // Antioxid. Redox. Signal. 2001. Vol. 3. P. 71-79.
  14. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis / M. B. Paumen [et al.] // J. Biol. Chem. 1997. Vol. 272. P. 3324-3329.
  15. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes / M. Shimabukuro [et al.] // Proc. Natl. Acad. Sci. U.S.A. 1998. Vol. 95. P. 2498-2502.
  16. Blzquez, C. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase / C. Blzquez, I. Galve-Roperh, M. Guzmn // The FASEB Journal. 2000. Vol. 14. P. 2315-2322.
  17. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis / G. C. Sparagna [et al.] // Am. J. Physiol. Heart Circ. Physiol. 2000. Vol. 279, N 5. P. H2124-H2132.
  18. Thress, K. Mitochondria at the crossroad of apoptotic cell. Death / K. Thress S. Kornbluth, J. J. Smith // J. Bioenerg. Biomembr. 1999. Vol. 31. P. 321-326.
  19. Apoptosis-inducing factor (AIF): A ubiquitous mitochondrial oxidoreductase involved in apoptosis / E. Daugas [et al.] // FEBS Lett. 2000. Vol. 476. P. 118-123.
  20. Cory, S. The Bcl2 family: regulators of the cellular life-or-death switch / S. Cory, J. M. Adams // Nat. Rev. Cancer. 2002. Vol. 2. P. 647-656.
  21. Fatty acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase / L. Weiss [et al.] // Biol. Chem. Hoppe Seyler. 1986. Vol. 367. P. 905-912.
  22. Clarke, S. D. Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation / S. D. Clarke // J. Anim. Sci. 1993. Vol. 71. P. 1957-1965.
  23. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis / J. A. Menendez [et al.] // Int. J. Oncol. 2004. Vol. 24. P. 1369-1383.
  24. 1997 Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma / L. Z. Milgraum [et al.] // Clin. Cancer Res. 1997. Vol. 3. P. 2115-2120.
  25. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients / P. L. Alo [et al.] // Cancer. 1996. Vol. 77. P. 474-482.
  26. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells / E. S. Pizer [et al.] // Cancer Res. 1996. Vol. 56. P. 2745-2747.
  27. Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells / T. Kusakabe [et al.] // J. Histochem. Cytochem. 2000. Vol. 48. P. 613-622.
  28. Regulation of fatty acid synthetase ribonucleic acid in the human endometrium during the menstrual cycle / C. Escot [et al.] // J. Clin. Endocrinol. Metab. 1990. Vol. 70. P. 1319-1324.
  29. Fatty acid synthetase and its mRNA are induced by progestins in breast cancer cells / D. Chalbos [et al.] // J. Biol. Chem. 1987. Vol. 262. P. 9923-9926.
  30. 1998 Fatty acid synthase expression in endometrial carcinoma: correlation with cell proliferation and hormone receptors / E. S. Pizer [et al.] // Cancer. 1998. Vol. 83. P. 528-537.
  31. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins / J. V. Swinnen [et al.] // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 12975-12980.
  32. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression: Potential mechanism for the lipogenic effect of progesterone in adipose tissue / D. Lacasa [et al.] // J. Biol. Chem. 2001. Vol. 276. P. 11512-11516.
  33. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence / S. L. Ettinger [et al.] // Cancer Res. 2004. Vol. 64. P. 2212-2221.
  34. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c / Y. A. Yang [et al.] // Exp. Cell. Res. 2003. Vol. 282. P. 132-137.
  35. Effects of temperature and glycerides on the enhancement of Agkistrodon piscivorus piscivorus phospholipase A2 activity by lysolecithin and palmitic acid / J. D. Bell [et al.] // Biochemistry. 1995. Vol. 34. P. 11551-11560.
  36. Epand, R. M. Lipid polymorphism and lipid-protein interactions / R. M. Epand // Biochim. Biophys. Acta. 1998. Vol. 1376. P. 353-368.
  37. Killian, J. A. Hydrophobic mismatch between proteins and lipids in membranes / J. A. Killian // Biochim. Biophys. Acta. 1998. P. 1376; P. 401-416.
  38. Litman, B. J. A role of phospholipid polyunsaturation in modulating membrane protein function / B. J. Litman, D. C. Mitchell // Lipids. 1996. Vol. 31. P. S193-S197.
  39. Wold, F. In vivo chemical modification of proteins (post-translational modification) / F. Wold // Annu. Rev. Biochem. 1981. Vol. 50. P. 783-814.
  40. Palmitoylation of p59fyn is reversible and sufficient for plasma membrane association / A. Wolven [et al.] // Mol. Biol. Cell. 1997. Vol. 8. P. 1159-1173.
  41. Schultz, A. M. Fatty acylation of proteins / A. M. Schultz, L. E. Henderson, S. Oroszlan // Annu. Rev. Cell. Biol. 1988. Vol. 4. P. 611-647.
  42. King, M. J. N-Myristoyltransferase assay using phosphocellulose paper binding / M. J. King, R. K. Sharma // Anal. Biochem. 1991. Vol. 199. P. 149-153.
  43. N-Myristoyltransferase / R. V. Rajala [et al.] // Mol. Cell. Biochem. 2000. Vol. 204. P. 135-155.
  44. Liu, J. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the golgi region of cells: a green fluorescent protein study / J. Liu, T. E. Hughes, W. C. Sessa // J. Cell Biol. 1997. Vol. 137. P. 1525-1535.
  45. Kamps, M. P. Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation / M. P. Kamps, J. E. Buss, B. M. Sefton // Cell. 1986. Vol. 45. P. 105-112.
  46. Summy, J. M. Src family kinases in tumor progression and metastasis / J. M. Summy, G. E. Gallick // Cancer Metastasis Rev. 2003. Vol. 22. P. 337-358.
Contacts | ©Vitebsk State Medical University, 2007