Novosti
Khirurgii
This journal is
indexed in Scopus









Year 2020 Vol. 28 No 1

REVIEWS

DOI: https://dx.doi.org/10.18484/2305-0047.2020.1.74   |  

I.V. MAIBORODIN 1, T.V. MIKHEEVA 1, G.YU. YARIN 2, S.V. KHOMENYUK 1, M.K. AGZAEV 1, V.I. MAIBORODINA 3, A.A. SHEVELA 1, I.A. VILGELMI 2, A.I. SHEVELA 1

SOME MORPHOLOGICAL CHARACTERISTICS OF TISSUE REACTIONS AFTER IMPLANTATION OF METAL PRODUCTS

Institute of Chemical Biology and Fundamental Medicine,
Siberian Branch of the Russian Academy of Sciences 1,
Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan 2,
Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine 3, Novosibirsk,
The Russian Federation

The use of metalworks for introduction into the organism is still relevant, and in some cases, it is the only possible way for corrects some pathological processes. However, all metal products, when implanted into the organism, cause a response of the immune system. Also, all metal implants, regardless of their composition and properties, even made from inert and very hard materials are subject for corrosion and destruction. Typically, small particles do not cause organism reactions, but with a large number or the appearance of large fragments, it is possible to develop a typical foreign body reaction with encapsulation and granuloma formation, and potentiation of weakening of fixation and further destruction of the introduced metal product.
Apparently, the greatest prospects for improving the results of the use of metal implants are cellular technologies that reduce the severity of acute (during implantation surgery) and chronic (accompanying the presence of a foreign body in tissues) inflammation, especially since multipotent stromal cells adhere well to the surface of most artificial materials. At the same time, the literature almost doesnt contain data about the effects of immune cells on the metal structures, how quickly it will cause foreign body reactions and corrode after selective activation or inhibition of certain cells. The solution of this problem will allow not only to improve the results of the implantation procedure, but also to operate the processes of integration, degradation and rejection of various foreign bodies.

Keywords: implants, metals, implantation complications, corrosion particles, immune cells, multipotent stromal cells
p. 74-83 of the original issue
References
  1. Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration. Clin Implant Dent Relat Res. 2016 Feb;18(1):192-203. doi: 10.1111/cid.12274
  2. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008 Apr;20(2):86-100. doi: 10.1016/j.smim.2007.11.004
  3. Yost MJ, Morales MO, Rodriguez-Rivera V, Yost EM, Terracio L, Fann SA. A model system for primary abdominal closures. Methods Mol Biol. 2013;1037:165-73. doi: 10.1007/978-1-62703-505-7_9
  4. Richter A, Kruse C, Moser A, Hofmann UG, Danner S. Cellular modulation of polymeric device surfaces: promise of adult stem cells for neuro-prosthetics. Front Neurosci. 2011 Oct 10;5:114. doi: 10.3389/fnins.2011.00114
  5. Shevela , Toder MS, Matveeva VA, Artemeva LV, Matveev AL, Meisner SN, Meisner LL, Shevela AI, Anikeev AA, Figurenko NF, Maslov RV, Bayborodin SI, Maiborodin IV. Chemically pure silicon and titanium coating is not toxic for mesenchymal stromal cells and improves cytological compatibility of electropolished tini alloy. Vopr Rekonstrukt i Plast Khirurgii. 2017;(3):45-50. doi: 10.17223/1814147/62/06 (In Russ.)
  6. Maiborodin IV, Iakushenko VK, Maiborodina VI. Interaction of nickelide-titanium implant with tissues in human. Arkh Patologii. 2002;64(2):50-2. https://www.ncbi.nlm.nih.gov/pubmed/12107907 (In Russ.)
  7. Herranz-Diez C, Gil FJ, Guillem-Marti J, Manero JM. Mechanical and physicochemical characterization along with biological interactions of a new Ti25Nb21Hf alloy for bone tissue engineering. J Biomater Appl. 2015;30(2):171-81. doi: 10.1177/0885328215577524
  8. Rahal MD, Brånemark PI, Osmond DG. Response of bone marrow to titanium implants: osseointegration and the establishment of a bone marrow-titanium interface in mice. Int J Oral Maxillofac Implants. 1993;8(5):573-79. https://www.ncbi.nlm.nih.gov/pubmed/8112799
  9. Urban RM, Jacobs JJ, Gilbert JL, Galante JO. Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J Bone Joint Surg Am. 1994 Sep;76(9):1345-59. doi: 10.2106/00004623-199409000-00009
  10. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am. 1988;70(3):347-56. https://www.ncbi.nlm.nih.gov/pubmed/3279037
  11. Willert HG, Bertram H, Buchhorn GH. Osteolysis in alloarthroplasty of the hip. The role of bone cement fragmentation. Clin Orthop Relat Res. 1990 Sep;(258):108-21. https://www.ncbi.nlm.nih.gov/pubmed/2203567
  12. Goodman SB, Ma T, Chiu R, Ramachandran R, Smith RL. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials. 2006 Dec;27(36):6096-101. doi: 10.1016/j.biomaterials.2006.08.023
  13. Konttinen YT, Zhao D, Beklen A, Ma G, Takagi M, Kivelä-Rajamäki M, Ashammakhi N, Santavirta S. The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res. 2005 Jan;(430):28-38. doi: 10.1097/01.blo.0000150451.50452.da
  14. Moholkar K, Tamblyn P. Aggressive granulomatous lesion presenting as tumor in cementless long stem total hip arthroplasty. J Arthroplasty. 2001 Apr;16(3):404-7. doi: 10.1054/arth.2001.23365
  15. Sakamoto M, Watanabe H, Higashi H, Kubosawa H. Pseudotumor caused by titanium particles from a total hip prosthesis. Orthopedics. 2016 Jan-Feb;39(1):e162-5. doi: 10.3928/01477447-20151218-12
  16. Santavirta S, Konttinen YT, Bergroth V, Eskola A, Tallroth K, Lindholm TS. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. J Bone Joint Surg Am. 1990 Feb;72(2):252-58. doi: 10.2106/00004623-199072020-00014
  17. Santavirta S, Sorsa T, Konttinen YT, Saari H, Eskola A, Eisen AZ. Role of mesenchymal collagenase in the loosening of total hip prosthesis. Clin Orthop Relat Res. 1993 May;(290):206-15. https://www.ncbi.nlm.nih.gov/pubmed/8472451
  18. Lohmann CH, Meyer H, Nuechtern JV, Singh G, Junk-Jantsch S, Schmotzer H, Morlock MM, Pflüger G. Periprosthetic tissue metal content but not serum metal content predicts the type of tissue response in failed small-diameter metal-on-metal total hip arthroplasties. J Bone Joint Surg Am. 2013 Sep 4;95(17):1561-8. doi: 10.2106/JBJS.L.01273
  19. Tuan RS, Lee FY, T Konttinen Y, Wilkinson JM, Smith RL. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg. 2008;16(Suppl 1):S42-48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714366/
  20. Thornhill TS, Ozuna RM, Shortkroff S, Keller K, Sledge CB, Spector M. Biochemical and histological evaluation of the synovial-like tissue around failed (loose) total joint replacement prostheses in human subjects and a canine model. Biomaterials. 1990;11:69-72.
  21. Xu JW, Konttinen YT, Lassus J, Natah S, Ceponis A, Solovieva S, Aspenberg P, Santavirta S. Tumor necrosis factor-alpha (TNF-alpha) in loosening of total hip replacement (THR). Clin Exp Rheumatol. 1996 Nov-Dec;14(6):643-48. https://www.ncbi.nlm.nih.gov/pubmed/8978959
  22. Konttinen YT, Pajarinen J, Takakubo Y, Gallo J, Nich C, Takagi M, Goodman SB. Macrophage polarization and activation in response to implant debris: influence by particle disease and ion disease. J Long Term Eff Med Implants. 2014;24(4):267-81. doi: 10.1615/jlongtermeffmedimplants.2014011355
  23. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014 Jul 17;41(1):14-20. doi: 10.1016/j.immuni.2014.06.008
  24. Zhu D, Cockerill I, Su Y, Zhang Z, Fu J, Lee KW, Ma J, Okpokwasili C, Tang L, Zheng Y, Qin YX, Wang Y. Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Appl Mater Interfaces. 2019 Feb 20;11(7):6809-19. doi: 10.1021/acsami.8b20634
  25. Carty F, Mahon BP, English K. The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents? Clin Exp Immunol. 2017 Apr;188(1):1-11. doi: 10.1111/cei.12929
  26. Shree N, Venkategowda S, Venkatranganna MV, Bhonde RR. Treatment with adipose derived mesenchymal stem cells and their conditioned media reverse carrageenan induced paw oedema in db/db mice. Biomed Pharmacother. 2017 Jun;90:350-353. doi: 10.1016/j.biopha.2017.03.090
  27. de Witte SFH, Merino AM, Franquesa M, Strini T, van Zoggel JAA, Korevaar SS, Luk F, Gargesha M, OFlynn L, Roy D, Elliman SJ, Newsome PN, Baan CC, Hoogduijn MJ. Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Res Ther. 2017 Jun 8;8(1):140. doi: 10.1186/s13287-017-0590-6
Address for correspondence:
630090, Russian Federation,
Novosibirsk, Lavrentiev Ave., 8,
Institute of Chemical Biology
And Fundamental Medicine,
Center of New Medical Technologies.
Tel. office: 8-913-753-0767,
e-mail: imai@mail.ru,
Igor V. Maiborodin
Information about the authors:
Maiborodin Igor V., MD, Professor, Chief Researcher of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0002-8182-5084
Mikheeva Tatiana V., PhD, Doctorate Student of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0003-2249-5174
Yarin Gennadiy Yu., PhD, Leading Researcher of the Neurovertebrology Department of Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan, Novosibirsk, Russian Federation.
https://orcid.org/0000-0003-2011-1253
Khomenyuk Sergey V., Senior Researcher of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-7346-926X
Agzaev Magomed K., Post-Graduate Student of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
https://orcid.org/0000-0002-7474-4999
Maiborodina Vitalina I., MD, Leading Researcher of the Laboratory of Ultrastructural Bases of Pathology, Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russian Federation.
http://orcid.org/0000-0002-5169-6373
Shevela Aleksandr A., PhD, Doctorate Student of the Laboratory of Health Management Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0001-9235-9384
Vilgelmi Inna A., Gynecologist of the Center of Urology and Gynecology, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan, Novosibirsk, Russian Federation.
https://orcid.org/0000-0001-7769-6147
Shevela Andrey I., MD, Professor, Head of the Department Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
http://orcid.org/0000-0002-3164-9377
Contacts | ©Vitebsk State Medical University, 2007