Year 2018 Vol. 26 No 2

REVIEWS

YU.P. ORLOV 1, V.V. AFANAS’EV 2

HYPOXIA AND HYPEROXIA IN ANESTHESIOLOGIST-REANIMATOLOGIST PRACTICE. THE ROLE OF SUCCINATES IN CRITICAL CONDITIONS

Omsk State Medical University1, Omsk,
North-Western State Medical University named after I.I. Mechnikov 2, St. Petersburg,
The Russian Federation

The aim of the review was to analyze the potentially negative effects of hyperoxia in different groups of critically ill patients, including those after the heart arrest, craniocerebral trauma, stroke, and in cases of sepsis. It was found out that in case of these pathological processes and nosological forms, there is evidence that hyperoxia can have a direct and indirect damaging effect. A severe consequence of hyperoxia is not only activation of free radical oxidation and excessive synthesis of active oxygen forms, but also direct toxic damage to the lungs, which is associated with the development of atelectasis, tracheobronchitis and interstitial fibrosis. Hyperoxia can cause damage to any tissues and organs through peripheral vasoconstriction, which is extremely unfavorable for patients after heart arrest, after a craniocerebral trauma and stroke, as well as in septic patients.
The survey data emphasize that, taking into account individual adaptation to hypoxia, oxygen must be used individually, in accordance with the assessment of the current need for it. When using hyperoxia in patients in critical condition, it is possible to reduce the toxic effect of oxygen with the help of succinates, which support the mechanism of adaptation to hypoxia, and which have an antioxidant and antihypoxic effects. When carrying out oxygen therapy, it is necessary to avoid high concentrations of oxygen as much as possible, and in cases requiring high concentrations, to reduce the toxic effects of oxygen with the help of succinates.

Keywords: hypoxia, hyperoxia, succinates, heart arrest, trauma, stroke, sepsis
p. 226-237 of the original issue
References
  1. Helmerhorst HJ, Schultz MJ, van der Voort PH, de Jonge E, van Westerloo DJ. Bench-to-bedside review: the effects of hyperoxia during critical illness. Crit Care. 2015 Aug 17;19:284. doi: 10.1186/s13054-015-0996-4.
  2. Savino PB, Sporer KA, Barger JA, Brown JF, Gilbert GH, Koenig KL, Rudnick EM, Salvucci AA. Chest pain of suspected cardiac origin: current evidence-based recommendations for prehospital care. West J Emerg Med. 2015 Dec;16(7):983-95. doi: 10.5811/westjem.2015.8.27971.
  3. Glober NK, Sporer KA, Guluma KZ, Serra JP, Barger JA, Brown JF, Gilbert G, Koenig K, Rudnick E, Salvucci A. Acute stroke: current evidence-based recommendations for prehospital care. West J Emerg Med. 2016 Mar;17(2):104-28. doi: 10.5811/westjem.2015.12.28995.
  4. Iscoe S, Beasley R, Fisher JA. Supplementary oxygen for nonhypoxemic patients: O2 much of a good thing? Crit Care. 2011;15(3):305. doi: 10.1186/cc10229.
  5. Smith JL. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol. 1899 Mar 22;24(1):19-35.
  6. Parke RL, Eastwood GM, McGuinness SP. Oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Crit Care Resusc. 2013 Dec;15(4):287-93.
  7. de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort PH, Bosman RJ, de Waal RA, Wesselink R, de Keizer NF. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156. Published online 2008 Dec 10. doi: 10.1186/cc7150.
  8. Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006 Apr;34(4):453-63. doi: 10.1165/rcmb.2005-0223OC.
  9. Zaher TE, Miller EJ, Morrow DMP, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med. 2007 Apr 1; 42(7): 897-908. doi: 10.1016/j.freeradbiomed.2007.01.021
  10. Sjöberg F, Singer M. The medical use of oxygen: a time for critical reappraisal. J Intern Med. 2013 Dec;274(6):505-28. doi: 10.1111/joim.12139.
  11. Orbegozo CD, Puflea F, Donadello K, Taccone FS, Gottin L, Creteur J, Vincent JL, De Backer D. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res. 2015 Mar;98:23-8. doi: 10.1016/j.mvr.2014.11.006.
  12. Dell’Anna AM, Lamanna I, Vincent JL, Taccone FS. How much oxygen in adult cardiac arrest? Crit Care. 2014 Oct 7;18(5):555. doi: 10.1186/s13054-014-0555-4.
  13. Kilgannon JH, Jones A.E, Shapiro NI, Angelos MG, Milcarek B, Hunter K, Parrillo JE, Trzeciak S. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165-2171. doi: 10.1001/jama.2010.707.
  14. Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, Cameron P, Barger B, Ellims AH, Taylor AJ, Meredith IT, Kaye DM. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015 Jun 16;131(24):2143-50. doi: 10.1161/CIRCULATIONAHA.114.014494.
  15. Hofmann R, James SK, Svensson L, Witt N, Frick M, Lindahl B, östlund O, Ekelund U, Erlinge D, Herlitz J, Jernberg T. Determination of the role of Oxygen in suspected Acute Myocardial Infarction trial. Am Heart J. 2014 Mar;167(3):322-28. doi: 10.1016/j.ahj.2013.09.022.
  16. Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, Rosario-Rivera BL, Guyette FX, Rittenberger JC, Dezfulian C.The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015 Jan;41(1):49-57. doi: 10.1007/s00134-014-3555-6.
  17. Davis DP, Meade W, Sise MJ, Kennedy F, Simon F, Tominaga G, Steele J, Coimbra R. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009 Dec;26(12):2217-23. doi: 10.1089/neu.2009.0940.
  18. Brenner M, Stein D, Hu P, Kufera J, Wooford M, Scalea T. Association between early hyperoxia and worse outcomes after traumatic brain injury. Arch Surg. 2012 Nov;147(11):1042-6. doi: 10.1001/archsurg.2012.1560.
  19. Singhal AB. Oxygen therapy in stroke: past, present, and future. Int J Stroke. 2006 Nov;1(4):191-200. doi: 10.1111/j.1747-4949.2006.00058.x.
  20. Taher A, Pilehvari Z, Poorolajal J, Aghajanloo M. Effects of normobaric hyperoxia in traumatic brain injury: a randomized controlled clinical trial. Trauma Mon. 2016 Feb;21(1):e26772. Published online 2016 Feb 6. doi: 10.5812/traumamon.26772.
  21. Asfar P, Calzia E, Huber-Lang M, Ignatius A, Radermacher P. Hyperoxia during septic shock–Dr. Jekyll or Mr. Hyde? Shock. 2012 Jan;37(1):122-3. doi: 10.1097/SHK.0b013e318238c991.
  22. Rodríguez-González R, Martín-Barrasa JL, Ramos-Nuez Á, Cañas-Pedrosa AM, Martínez-Saavedra MT, García-Bello MÁ, López-Aguilar J, Baluja A, Álvarez J, Slutsky AS, Villar J. Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis. Shock. 2014 Aug;42(2):148-53. doi: 10.1097/SHK.0000000000000189.
  23. Stolmeijer R, ter Maaten JC, Zijlstra JG, Ligtenberg JJ. Oxygen therapy for sepsis patients in the emergency department: a little less? Eur J Emerg Med. 2014 Jun;21(3):233-5. doi: 10.1097/MEJ.0b013e328361c6c7.
  24. Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, Morelli A, Antonelli M, Singer M. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016 Oct 18;316(15):1583-89. doi: 10.1001/jama.2016.11993.
  25. Manning HL, Schwartzstein RM. Pathophysiology of dyspnea. N Engl J Med. 1995 Dec 7;333(23):1547-53.
  26. Abernethy AP, McDonald CF, Frith PA, Clark K, Herndon JE, Marcello J, Young IH, Bull J, Wilcock A, Booth S, Wheeler JL, Tulsky JA, Crockett AJ, Currow DC. Effect of palliative oxygen versus room air in relief of breathlessness in patients with refractory dyspnoea: a double-blind, randomised controlled trial. Lancet. 2010 Sep 4;376(9743):784-93. doi: 10.1016/S0140-6736(10)61115-4.
  27. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-1308. doi: 10.1056/NEJM200005043421801.
  28. Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015 Apr;169(4):332-40. doi: 10.1001/jamapediatrics.2014.3307.
  29. Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, Capellier G, Harrigan PW, Bailey M. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016 Jan 1;193(1):43-51. doi: 10.1164/rccm.201505-1019OC.
  30. He H, Long Y, Liu D, Liu D, Wang X, Zhou X. Clinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion index. Crit Care. 2015;19(1):330. Published online 2015 Sep 14. doi: 10.1186/s13054-015-1057-8.
  31. Martin DS, Grocott MP. Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia. Crit Care Med. 2013 Feb;41(2):423-32. doi: 10.1097/CCM.0b013e31826a44f6.
  32. Tannahill GM, Curtis AM, Adamik J, Palssonn-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013 11 Apr;496:238-42. doi: 10.1038/nature11986.
  33. Lukyanova L.D. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Patol Fiziologiia i Eksperim Terapiia. 2011;(1):3-19. (in Russ.)
  34. Krebs HA, Kornberg HL, Burnon K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212-98.
  35. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014 Jan 1;5(1):66-72. doi: 10.4161/viru.26907.
  36. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014 Nov 20;515(7527):431-5. doi: 10.1038/nature13909.
  37. Krebs HA. Some aspects of the energy transformation in living matter. Br Med Bull. 1953;9(2): 97-104. 10.1093/oxfordjournals.bmb.a074347
  38. Sukach MS. Sravnitel’naia otsenka vliianiia geptrala i tsitoflavina na reologicheskie svoistva krovi pri eksperimental’nom pankreonekroze. Omsk Nauch Vestn. 2013;(1):89-91. (in Russ.)
  39. Shidlovskii AS, Saltanov AI. Varianty mekhanizmov izmeneniia aktivnosti transaminaz: klinicheskaia interpretatsiia. Vestn Intensiv Terapii. 2015(1):22-32. (in Russ.)
  40. Ehinger JK, Piel S, Ford F, Karlsson M, Sjövall F, Frostner EA, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmér E. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun. 2016 Aug 9;7:12317. doi: 10.1038/ncomms12317.
  41. Jalloh I, Helmy A, Howe D, Shannon RJ, Grice P, Mason A, Gallagher CN, Stovell MG, van der Heide S, Murphy MP, Pickard JD, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KL. Focally perfused succinate potentiates brain metabolism in head injury patients. J Cereb Blood Flow Metab. 2017 Jul;37(7):2626-38. doi: 10.1177/0271678X16672665.
  42. Westerblad H, Allen DG. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid Redox Signal. 2011 Nov 1;15(9):2487-99. doi: 10.1089/ars.2011.3909.
  43. Orlov YP, Govorova NV, Glushchenko AV, Efremov EN, Vasilenko YuB. A critical incident during marathon competition as a result of metabolic decompensation. Klin Meditsina. 2017;95(1):85-89. (in Russ.)
  44. Hill GB. Hyperbaric oxygen exposures at 3 and 4 atmospheres absolute pressure for experimental gas gangrene: succinate protection against oxygen toxicity. Antimicrob Agents Chemother. 1972 Nov;2(5):384-89.
Address for correspondence:
644119, The Russian Federation,
Omsk, Perelet Str., 9
City Clinical Emergency Hospital № 1,
Department of Anesthesiology
and Reanimatology,
Omsk State Medical University,
Tel. +381-2-75-32-64,
е-mail: orlov-up@mail.ru,
Orlov Yurij P.
Information about the authors:
Orlov Yurij P., MD, Professor of the Department of Anesthesiology and Reanimatology, Omsk State Medical University, Omsk, Russian Federation.
http://orcid.org/0000-0002-6747-998X
Afanas’ev Vasilij V., MD, Professor of the Department of Emergency Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russian Federation.
http://orcid.org/0000-0001-6504-8169
Contacts | ©Vitebsk State Medical University, 2007-2023